Skip to main content
Log in

A translinear SiGe BiCMOS current-controlled oscillator with 80 Hz–800 MHz tuning range

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 3-phase current controlled sinusoidal oscillator, tunable over a wide range of frequencies is presented. The oscillator comprises a ring of 3 cascaded differential G m  − C low-pass filter stages, implemented in a fully translinear, NPN-only circuit. Closed-form analytical expressions are derived to quantify both frequency and amplitude tuning, as a function of two current biases. Experimental results from a 0.5 μm SiGe BiCMOS chip demonstrate 7 decades of tuning range, from 80 Hz to 800 MHz, as well as low harmonic distortion. Power consumption scales with oscillation frequency, measuring 2 μW/MHz The circuit serves a range of applications including agile communications, analog built-in self-test, stochastic adaptive control, spectroscopy, and bioinstrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Joshua R. Biller & Joseph E. McPeak

References

  1. Rohde, U. L., & Poddar, A. K. (2005). Configurable adaptive ultra low noise wideband VCOs. In Int. Conf. Ultra-Wideband (ICU 2005), pp. 452–457.

  2. Herzel, F., Erzgraber, H., & Ilkov, N. (2000). A new approach to fully integrated CMOS LC-oscillators with a very large tuning range. In Proc. Cust. Integr. Circuits Conf. (CICC 2000), pp. 573–576.

  3. Ewen, J. F., et al. (1995). CMOS circuits for Gb/s serial data communication. IBM Journal of Research and Development, 39, 73–81.

    Article  Google Scholar 

  4. Banu, M. (1988). MOS oscillators with multi-decade tuning range and gigahertz maximum speed. IEEE Journal of Solid-State Circuits, 23, 1386–1393.

    Article  Google Scholar 

  5. Verhoeven, C. J. M. (1992). A high-frequency electronically tunable quadrature oscillator. IEEE Journal of Solid-State Circuits, 27, 1097–1100.

    Article  Google Scholar 

  6. Retdian, N., Takagi, S., & Fujii, N. (2002). Voltage controlled ring oscillator with wide tuning range and fast voltage swing. In Proc. Asia-Pacific Conf. ASIC 2002, pp. 201–204.

  7. Zhao, X., Chebli, R., & Sawan, M. (2004). A wide tuning range voltage-controlled ring oscillator dedicated to ultrasound transmitter. In Proc. Int. Conf. Microelectr. (ICM 2004), pp. 313–316.

  8. Serrano-Gotarredona, T., Linares-Barranco, B., & Andreou, A. G. (1999). Very wide range tunable CMOS/bipolar current mirrors with voltage clamped input. IEEE Transactions on Circuits and Systems I , 46, 1398–1407.

    Article  Google Scholar 

  9. Serrano-Gotarredona, T., & Linares-Barranco, B. (1998). 7-decade tuning range CMOS OTA-C sinusoidal VCO. Electronics Letters, 34, 1621–1622.

    Article  Google Scholar 

  10. Gilbert, B. (1996). Current controlled quadrature oscillator based on differential G M /C cells. U.S. Patent 5,489,878.

  11. Gilbert, B. (1999). Quadrature oscillator using inherent nonlinearities of impedance cells to limit amplitude. U.S. Patent 6,008,701.

    Google Scholar 

  12. Doorenbosch, F. (1976). An integrated wide-tunable sine oscillator. IEEE Journal of Solid-State Circuits, 11, 401–403.

    Article  Google Scholar 

  13. Pookaiyaudom, S., & Mahattanakul, J. (1995). A 3.3 volt high-frequency capacitorless electronically-tunable log-domain oscillator. In Proc. Int. Symp. Circuits and Systems (ISCAS ’95), pp. 829–832.

  14. Srisuchinwong, B. (2000). Fully balanced current-tunable sinusoidal quadrature oscillator. International Journal of Electronics, 87, 547–556.

    Article  Google Scholar 

  15. Kiranon, W., Kesorn, J., & Wardkein, P. (1996). Current controlled oscillator based on translinear conveyors. Electronics Letters, 32, 1330–1331.

    Article  Google Scholar 

  16. Martinez, P. A., Sabadell, J., Aldea, C., & Celma, S. (1999). Variable frequency sinusoidal oscillators based on CCII+. IEEE Transactions on Circuits and Systems I, 46, 1386–1390.

    Article  Google Scholar 

  17. Serdijn, W. A., Mulder, J., van der Woerd, A. C., & van Roermund, A. H. M. (1998). A wide-tunable translinear second-order oscillator. IEEE Journal of Solid-State Circuits, 33, 195–201.

    Article  Google Scholar 

  18. Berny, A. D., Niknejad, A. M., & Meyer, R. G. (2004). A 1.8 GHz LC VCO with 1.3 GHz tuning range and mixed-signal amplitude calibration. In Symp. VLSI Circuits 2004, pp. 54–57.

  19. Fong, N. H. W., et al. (2003). Design of wide-band CMOS VCO for multiband wireless LAN applications. IEEE Journal of Solid-State Circuits, 38, 1333–1342.

    Article  MathSciNet  Google Scholar 

  20. Mukhopadhyay, R., et al. (2005). Reconfigurable RFICs in Si-based technologies for a compact intelligent RF front-end. IEEE Journal of Solid-State Circuits, 53, 81–93.

    Google Scholar 

  21. Milor, L. S. (1998). A tutorial introduction to research on analog and mixed-signal circuit testing. IEEE Transactions on Circuits and Systems II, 45, 1389–1407.

    Article  Google Scholar 

  22. Roberts, G. W. (1997). Improving the testability of mixed-signal integrated circuits. In Proc. Cust. Integr. Circuits Conf. (CICC 1997), pp. 214–221.

  23. Dufort, B., & Roberts, G. W. (1999). On-chip analog signal generation for mixed-signal built-in self-test. IEEE Journal of Solid-State Circuits, 34, 318–330.

    Article  Google Scholar 

  24. O’Meara, T. R. (1977). The multidither principle in adaptive optics. Journal of the Optical Society of America, 67, 306–315.

    Article  Google Scholar 

  25. Vorontsov, M. A., Carhart, G. W., & Ricklin, J. C. (1997). Adaptive phase-distortion correction based on parallel gradient-descent optimization. Optics Letters, 22, 907–909.

    Article  Google Scholar 

  26. Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2006). A robust continuous-time multi-dithering technique for laser communications using adaptive optics. In Proc. Int. Symp. Circuits and Systems (ISCAS ’06), pp. 3626–3629.

  27. Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2007). Multi-channel coherent detection for delay-insensitive model-free adaptive control. In Proc. Int. Symp. Circuits Syst, pp. 1775–1778.

  28. Loizos, D. N., Sotiriadis, P. P., & Cauwenberghs, G. (2007). High-speed, model-free adaptive control using parallel synchronous detection. In Proc. 20th SBCCI Symposium on Integrated Circuits and Systems Design.

  29. Hölzel, R. (1993). A simple wide-band sine wave quadrature oscillator. IEEE Transactions on Instrumentation and Measurement, 42, 758–760.

    Article  Google Scholar 

  30. Huang, Y., Hölzel, R., Pethig, R., & Wang, X. B. (1992). Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in Medicine and Biology, 37, 1499–1517.

    Article  Google Scholar 

  31. Lord, J. S., & Riedi, P. C. (1995). A swept frequency pulsed magnetic resonance spectrometer with particular application to NMR of ferromagnetic materials. Measurement Science & Technology, 6, 149–155.

    Article  Google Scholar 

  32. Gilbert, B. (1998). The multi-tanh principle: A tutorial overview. IEEE Journal of Solid-State Circuits, 33, 2–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Loizos.

Additional information

Chip fabrication was provided by MOSIS through the MOSIS Educational Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loizos, D.N., Sotiriadis, P.P. & Cauwenberghs, G. A translinear SiGe BiCMOS current-controlled oscillator with 80 Hz–800 MHz tuning range. Analog Integr Circ Sig Process 57, 107–115 (2008). https://doi.org/10.1007/s10470-008-9185-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-008-9185-6

Keywords

Navigation