Skip to main content
Log in

Computable Numberings of Families of Infinite Sets

  • Published:
Algebra and Logic Aims and scope

We state the following results: the family of all infinite computably enumerable sets has no computable numbering; the family of all infinite \( {\varPi}_1^1 \) sets has no \( {\varPi}_1^1 \) -computable numbering; the family of all infinite \( {\varSigma}_2^1 \) sets has no \( {\varSigma}_2^1 \) -computable numbering. For k > 2, the existence of a \( {\varSigma}_k^1 \) -computable numbering for the family of all infinite \( {\varSigma}_k^1 \) sets leads to the inconsistency of ZF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Dorzhieva, “Elimination of metarecursive in Owing’s theorem,” Vestnik NGU, Mat., Mekh., Inf., 14, No. 1, 35-43 (2014).

    MATH  Google Scholar 

  2. M. V. Dorzhieva, “Friedberg numbering of the family of all \( {\varSigma}_2^1 \) -sets,” Sib. Zh. Ch. Prikl. Mat., 18, No. 2, 47-52 (2018).

  3. R. F. Friedberg, “Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication,” J. Symb. Log., 23, No. 3, 309-316 (1958).

    Article  MathSciNet  Google Scholar 

  4. S. S. Goncharov and A. Sorbi, “Generalized computable numerations and nontrivial Rogers semilattices,” Algebra and Logic, 36, No. 6, 359-369 (1997).

    Article  MathSciNet  Google Scholar 

  5. S. S. Goncharov, S. Lempp, and D. R. Solomon, “Friedberg numberings of families of ncomputably enumerable sets,” Algebra and Logic, 41, No. 2, 81-86 (2002).

    Article  MathSciNet  Google Scholar 

  6. J. C. Owings, Jun., “The meta-r.e. sets, but not the \( {\varPi}_1^1 \) sets, can be enumerated without repetition,” J. Symb. Log., 35, No. 2, 223-229 (1970).

  7. A. I. Mal’tsev, Algorithms and Recursive Functions [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  8. H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York (1967).

    MATH  Google Scholar 

  9. V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Borel and Projective Sets [in Russian], MTsNMO, Moscow (2010).

    Google Scholar 

  10. K. Gödel, “The consistency of the axiom of choice and of the generalized continuumhypothesis,” Proc. Natl. Acad. Sci., 24, 556-557 (1938).

    Article  Google Scholar 

  11. J. W. Addison, “Separation principles in the hierarchies of classical and effective descriptive set theory,” Fund. Math., 46, 123-135 (1959).

    Article  MathSciNet  Google Scholar 

  12. J. W. Addison and Y. N. Moschovakis, “Some consequences of the axiom of definable determinateness,” Proc. Natl. Acad. Sci., 59, 708-712 (1968).

    Article  MathSciNet  Google Scholar 

  13. D. A. Martin, “The axiom of determinateness and reduction principles in the analytical hierarchy,” Bull. Am. Math. Soc., 74, No. 4, 687-689 (1968).

    Article  MathSciNet  Google Scholar 

  14. T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin (2003).

    Google Scholar 

  15. J. W. Addison, “Some consequences of the axiom of constructibility,” Fund. Math., 46, 337-357 (1959).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dorzhieva.

Additional information

Supported by RFBR, project no. 14-01-31278 mol-a.

Translated from Algebra i Logika, Vol. 58, No. 3, pp. 334-343, May-June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorzhieva, M.V. Computable Numberings of Families of Infinite Sets. Algebra Logic 58, 224–231 (2019). https://doi.org/10.1007/s10469-019-09540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-019-09540-4

Keywords

Navigation