Skip to main content
Log in

Maximal and Submaximal 𝔛-Subgroups

  • Published:
Algebra and Logic Aims and scope

Let 𝔛 be a class of finite groups closed under taking subgroups, homomorphic images, and extensions. Following H. Wielandt, we call a subgroup H of a finite group G a submaximal 𝔛-subgroup if there exists an isomorphic embedding ϕ : GG* of G into some finite group G* under which Gϕ is subnormal in G* and Hϕ = KGϕ for some maximal 𝔛-subgroup K of G*. In the case where 𝔛 coincides with the class of all π-groups for some set π of prime numbers, submaximal 𝔛-subgroups are called submaximal π-subgroups. In his talk at the well-known conference on finite groups in Santa Cruz in 1979, Wielandt emphasized the importance of studying submaximal π-subgroups, listed (without proof) certain of their properties, and formulated a number of open questions regarding these subgroups. Here we prove properties of maximal and submaximal 𝔛- and π-subgroups and discuss some open questions both Wielandt’s and new ones. One of such questions due to Wielandt reads as follows: Is it always the case that all submaximal 𝔛-subgroups are conjugate in a finite group G in which all maximal 𝔛-subgroups are conjugate?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wielandt, “Zusammengesetzte Gruppen: Holders Programm heute,” in Proc. Symp. Pure Math., 37, Am. Math. Soc., Providence, RI (1980), pp. 161-173.

  2. H. Wielandt, Sur la Stucture des Groupes Composés, Séminare Dubriel-Pisot (Algèbre et Théorie des Nombres), 17e anée, No. 17 (1963/64).

  3. H. Wielandt, “Zusammengesetzte Gruppen endlicher Ordnung. Vorlesung an der Univ. Tübingen im Wintersemester 1963/64,” in H. Wielandt, Mathematische Werke. Mathematical Works, Vol. 1, Group Theory, B. Huppert and H. Schneider (Eds.), Walter de Gruyter, Berlin (1994), pp. 607-616.

  4. P. Hall, “Theorems like Sylow’s,” Proc. London Math. Soc., III. Ser., 6, 286-304 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Hall, “A note on soluble groups,” J. London Math. Soc., 3, 98-105 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Hall, “A characteristic property of soluble groups,” J. London Math. Soc., 12, 198-200 (1937).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. A. Chunikhin, “Soluble groups,” Izv. NIIMM Tomsk Univ., 2, 220-223 (1938).

    Google Scholar 

  8. H. Wielandt, “Entwicklungslinien in der Strukturtheorie der endlichen Gruppen,” Proc. Int. Congr. Math. (Edinburgh, 1958), Cambridge Univ. Press, London (1960), pp. 268-278.

  9. H. Wielandt, “Zum Satz von Sylow,” Math. Z., 60, No. 4, 407/408 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Wielandt, “Sylowgruppen und Kompositions-Struktur,” Abh. Math. Sem. Univ. Hamburg, 22, 215-228 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Wielandt, “Zum Satz von Sylow. II,” Math. Z., 71, No. 4, 461/462 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Wielandt, “Arithmetische Struktur und Normalstruktur endlicher Gruppen,” in Convegno Internaz, Teoria Gruppi Finiti Appl., Edizioni Cremonese, Roma (1960), pp. 56-65.

  13. H. Wielandt, “Sylowtürme in subnormalen Untergruppen,” Math. Z., 73, No. 4, 386-392 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Wielandt and B. Huppert, “Arithmetical and normal structure of finite groups,” in Proc. Symp. Pure Math., 6, Am. Math. Soc., Providence, RI (1962), pp. 17-38.

  15. B. Hartley, “Helmut Wielandt on the π-structure of finite groups,” in H. Wielandt, Mathematische Werke. Mathematical Works, Vol. 1, Group Theory, B. Huppert and H. Schneider (Eds.), Walter de Gruyter, Berlin (1994), pp. 511-516.

  16. E. P. Vdovin and D. O. Revin, “Theorems of Sylow type,” Usp. Mat. Nauk, 66, No. 5(401), 3-46 (2011).

    Article  MATH  Google Scholar 

  17. D. O. Revin and E. P. Vdovin, “An existence criterion for Hall subgroups of finite groups,” J. Group Th., 14, No. 1, 93-101 (2011).

    MathSciNet  MATH  Google Scholar 

  18. W. Guo, Structure Theory of Canonical Classes of Finite Groups, Springer-Verlag, Berlin (2015).

    Book  MATH  Google Scholar 

  19. E. P. Vdovin and D. O. Revin, “Pronormality of Hall subgroups in finite simple groups,” Sib. Math. J., 53, No. 3, 419-430 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. D. O. Revin and E. P. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups,” J. Alg., 324, No. 12, 3614-3652 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Guo, The Theory of Classes of Groups, Math. Appl. (Dordrecht), 505, Kluwer Acad. Publ.; Beijing, Sci. Press, Dordrecht (2000).

    Google Scholar 

  22. L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978).

    MATH  Google Scholar 

  23. M. Suzuki, Group Theory II, Grundlehren Mathem. Wiss., 248, Springer-Verlag, New York (1986).

    Google Scholar 

  24. Unsolved Problems in Group Theory, The Kourovka Notebook, 18th edn., Institute of Mathematics SO RAN, Novosibirsk (2014); http://www.math.nsc.ru/alglog/18kt.pdf.

  25. D. O. Revin and E. P. Vdovin, “Hall subgroups of finite groups,” in Cont. Math., 402, Israel Math. Conf. Proc. (2006), pp. 229-263.

  26. D. O. Revin, “The -property in finite simple groups,” Algebra and Logic, 47, No. 3, 210-227 (2008).

    Article  MathSciNet  Google Scholar 

  27. W. Guo, D. O. Revin, and E. P. Vdovin, “Confirmation for Wielandt’s conjecture,” J. Alg., 434, 193-206 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Hartley, “A theorem of Sylow type for finite groups,” Math. Z., 122, No. 4, 223-226 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  29. L. A. Shemetkov, “Generalizations of Sylow’s theorem,” Sib. Math. J., 44, No. 6, 1127-1132 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. W. Guo and D. O. Revin, “Relationship between the conjugacy of maximal and submaximal X-subgroups,” to appear in Algebra and Logic.

  31. N. V. Maslova and D. O. Revin, “On nonabelian composition factors of a finite group that is prime spectrum minimal,” Trudy Inst. Mat. Mekh. UrO RAN, 19, No. 4, 155-166 (2013).

    Google Scholar 

  32. P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Note Ser., 129, Cambridge Univ., Cambridge (1990).

    Book  MATH  Google Scholar 

  33. J. Humphreys, Modular Representations of Finite Groups of Lie Type, London Math. Soc. Lect. Note Series, 326, Cambgidge Univ. Press, Cambgridge (2006).

    Google Scholar 

  34. M. W. Liebeck and J. Saxl, “The primitive permutation groups of odd degree,” J. London Math. Soc., II. Ser., 31, No. 2, 250-264 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  35. W. M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes,” J. Alg., 106, No. 1, 15-45 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups,” Trudy Inst. Mat. Mekh. UrO RAN, 14, No. 4, 100-118 (2008).

    Google Scholar 

  37. N. V. Maslova, “Classification of maximal subgroups of odd index in finite groups with alternating socle,” Trudy Inst. Mat. Mekh. UrO RAN, 16, No. 3, 182-184 (2010).

    Google Scholar 

  38. N. V. Maslova, “Maximal subgroups of odd index in finite groups with simple orthogonal socle,” Trudy Inst. Mat. Mekh. UrO RAN, 16, No. 4, 237-245 (2010).

    Google Scholar 

  39. N. V. Maslova, “Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle,” Algebra and Logic, 50, No. 2, 133-145 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  40. N. V. Maslova, “Classification of maximal subgroups of odd index in finite simple classical groups: Addendum,” to appear in Sib. El. Mat. Izv.; arXiv:1710.01563 [math.GR].

  41. C. D. H. Cooper, “Maximal π-subgroups of the symmetric groups,” Math. Z., 123, 285-289 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. S. Kondrat’ev, N. V. Maslova, and D. O. Revin, “A pronormality criterion for supplements to Abelian normal subgroups,” Trudy Inst. Mat. Mekh. UrO RAN, 22, No. 1, 153-158 (2016).

    MathSciNet  MATH  Google Scholar 

  43. A. S. Kondrat’ev, N. V. Maslova, and D. O. Revin, “On the pronormality of subgroups of odd index in finite simple groups,” Sib. Math. J., 56, No. 6, 1101-1107 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  44. A. S. Kondrat’ev, N. V. Maslova, and D. O. Revin, “On the pronormality of subgroups of odd index in finite simple symplectic groups,” Sib. Math. J., 58, No. 3, 467-475 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  45. P. B. Kleidman, “A proof of the Kegel–Wielandt conjecture on subnormal subgroups,” Ann. Math. (2), 133, No. 2, 369-428 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  46. N. Ch. Manzaeva, “A solution of Wielandt’s problem for the sporadic groups,” Sib. El. Mat. Izv., 9, 294-305 (2012); http://semr.math.nsc.ru/v9/p294-305.pdf.

    MathSciNet  MATH  Google Scholar 

  47. D. O. Revin, “Around a conjecture of Ph. Hall,” Sib. El. Mat. Izv., 6, 366-380 (2009); http://semr.math.nsc.ru/v6/p366-380.pdf.

    MATH  Google Scholar 

  48. E. P. Vdovin, N. Ch. Manzaeva, and D. O. Revin, “On the heritability of the property by subgroups,” Trudy Inst. Mat. Mekh. UrO RAN, 17, No. 4, 44-52 (2011).

    MATH  Google Scholar 

  49. W. Guo and D. O. Revin, “Classification and properties of the π-submaximal subgroups in minimal nonsolvable groups,” Bull. Math. Sci. (2017); https://doi.org/https://doi.org/10.1007/s13373-017-0112-y.

  50. J. G. Thompson, “Nonsolvable finite groups all of whose local subgroups are solvable,” Bull. Am. Math. Soc., 74, 383-437 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Wielandt, “Eine Verallgemeinerung der invarianten Untergruppen,” Math. Z., 45, 209-244 (1939).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Guo.

Additional information

Translated from Algebra i Logika, Vol. 57, No. 1, pp. 14-42, January-February, 2018.

Supported by the NNSF of China, grant No. 11771409.

Supported by Chinese Academy of Sciences President’s International Fellowship Initiative (grant No. 2016-VMA078) and by SB RAS Fundamental Research Program I.1.1 (project No. 0314-2016-0001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Revin, D.O. Maximal and Submaximal 𝔛-Subgroups. Algebra Logic 57, 9–28 (2018). https://doi.org/10.1007/s10469-018-9475-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-018-9475-8

Keywords

Navigation