Skip to main content
Log in

Dominions of universal algebras and projective properties

  • Published:
Algebra and Logic Aims and scope

Let A be a universal algebra and H its subalgebra. The dominion of H in A (in a class {ie304-01}) is the set of all elements a ∈ A such that every pair of homomorphisms f, g: A → ∈ {ie304-02} satisfies the following: if f and g coincide on H, then f(a) = g(a). A dominion is a closure operator on a set of subalgebras of a given algebra. The present account treats of closed subalgebras, i.e., those subalgebras H whose dominions coincide with H. We introduce projective properties of quasivarieties which are similar to the projective Beth properties dealt with in nonclassical logics, and provide a characterization of closed algebras in the language of the new properties. It is also proved that in every quasivariety of torsion-free nilpotent groups of class at most 2, a divisible Abelian subgroup H is closed in each group 〈H, a〉 generated by one element modulo H.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Isbell, “Epimorphisms and dominions,” Proc. Conf. Cat. Algebra, La Jolla 1965, Springer-Verlag, New York (1966), pp. 232–246.

    Google Scholar 

  2. J. R. Isbell, “Epimorphisms and dominions. IV,” J. London Math. Soc., II. Ser., 1, 265–273 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Magidin, “Dominions in varieties of nilpotent groups,” Comm. Alg., 28, No. 3, 1241–1270 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Mitchell, “The dominion of Isbell,” Trans. Am. Math. Soc., 167, 319–331 (1972).

    Article  MATH  Google Scholar 

  5. D. Saracino, “Amalgamation bases for nil-2 groups,” Alg. Univ., 16, 47–62 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. E. Scheiblich, “On epics and dominions of bands,” Semigroup Forum, 13, 103–114 (1976/77).

    Article  MathSciNet  Google Scholar 

  7. A. Budkin, “Dominions in quasivarieties of universal algebras,” Stud. Log., 78, Nos. 1/2, 107–127 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  8. P. V. Higgins, “Epimorphisms and amalgams,” Coll. Math., 56, No. 1, 1–17 (1988).

    MATH  MathSciNet  Google Scholar 

  9. A. I. Mal'tsev, “Quasiprimitive classes of abstract algebras,” Dokl. Akad. Nauk SSSR, 108, No. 2, 187–189 (1956).

    MATH  MathSciNet  Google Scholar 

  10. S. A. Shakhova, “Lattices of dominions in quasivarieties of Abelian groups,” Algebra Logika, 44, No. 2, 238–251 (2005).

    MATH  MathSciNet  Google Scholar 

  11. S. A. Shakhova, “Distributivity conditions for lattices of dominions in quasivarieties of Abelian groups,” Algebra Logika, 45, No. 4, 484–499 (2006).

    MATH  MathSciNet  Google Scholar 

  12. A. Budkin, “Lattices of dominions of universal algebras,” Algebra Logika, 46, No. 1, 26–45 (2007).

    MathSciNet  Google Scholar 

  13. L. L. Maksimova, “Modal logics and varieties of modal algebras: Beth properties, interpolation, and amalgamation,” Algebra Logika, 31, No. 2, 145–166 (1992).

    MathSciNet  Google Scholar 

  14. L. L. Maksimova, “Projective Beth properties in modal and superintuitionistic logics,” Algebra Logika, 38, No. 3, 316–333 (1999).

    MATH  MathSciNet  Google Scholar 

  15. L. L. Maksimova, “Intuitionistic logic and implicit definability,” Ann. Pure Appl. Log., 105, Nos. 1–3, 83–102 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. L. L. Maksimova, “Restricted interpolation and the projective Beth property in equational logic,” Algebra Logika, 42, No. 6, 712–726 (2003).

    MathSciNet  Google Scholar 

  17. V. A. Gorbunov, Algebraic Theory of Quasivarieties, Sib. School Alg. Log. [in Russian], Nauch. Kniga, Novosibirsk (1999).

    Google Scholar 

  18. A. I. Mal'tsev, Algebraic Systems [in Russian], Nauka, Moscow (1970).

    MATH  Google Scholar 

  19. A. I. Budkin, Quasivarieties of Groups [in Russian], Altai State Univ., Barnaul (2002).

    Google Scholar 

  20. A. I. Budkin and V. A. Gorbunov, “Toward a theory of quasivarieties of algebraic systems,” Algebra Logika, 14, No. 2, 123–142 (1975).

    MATH  MathSciNet  Google Scholar 

  21. M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Budkin.

Additional information

Translated from Algebra i Logika, Vol. 47, No. 5, pp. 541–557, September–October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budkin, A.I. Dominions of universal algebras and projective properties. Algebra Logic 47, 304–313 (2008). https://doi.org/10.1007/s10469-008-9029-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-008-9029-6

Keywords

Navigation