Skip to main content
Log in

Primitive Deformations of Quantum p-Groups

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

In this paper, working over an algebraically closed field k of prime characteristic p, we introduce a concept, called Primitive Deformation, to provide a structured technique to classify certain finite-dimensional Hopf algebras which are Hopf deformations of restricted universal enveloping algebras. We illustrate this technique for the case when the restricted Lie algebra has dimension 3. Together with our previous classification results, we provide a complete classification of p3-dimensional connected Hopf algebras over k of characteristic p > 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andruskiewitsch, N.: On finite-dimensional Hopf algebras. Proc. Int. Cong. Math, Seoul 2, 117–141 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Cibils, C., Lauve, A., Witherspoon, S.: Hopf quivers and Nichols algebras in positive characteristic. Proc Amer. Math. Soc. 137, 4029–4041 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Etingof, P., Gelaki, S.: On finite-dimensional semisimple and cosemisimple Hopf algebras in positive characteristic, Internat. Math. Res. Notices 16, 851–864 (1998)

    Article  MATH  Google Scholar 

  4. Heckenberger, I., Wang, J.: Rank 2 Nichols algebras of diagonal type over fields of positive characteristic. SIGMA 11(011), 24 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Henderson, G.: Low-dimensional cocommutative connected Hopf algebras. J. Pure Appl. Alg. 102, 173–193 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hochschild, G.: Representations of restricted Lie algebras of characteristic p. Proc. Amer. Math. Soc. 5, 603–605 (1954)

    MathSciNet  MATH  Google Scholar 

  7. Hofstetter, I.: Extensions of Hopf algebras and their cohomological description. J. Algebra 164, 264–298 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jacobson, N.: Restricted Lie algebras of characteristic p. Trans. Amer. Math. Soc. 50, 15–25 (1941)

    MathSciNet  MATH  Google Scholar 

  9. Jacobson, N.: A note on Lie algebras of characteristic p. Amer. J. Math. 74, 357–359 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  10. Leedham-Green, C.R., McKay, S.: The structure of groups of prime power order, Lond. Math. Soc. Monographs, vol. 27. Oxford University Press, Oxford (2002)

    Google Scholar 

  11. Liu, G., Ye, Y.: Monomial Hopf algebras over fields of positive characteristic. Sci. China Ser. A 49, 320–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mastnak, M., Pevtsova, J., Schauenberg, P., Witherspoon, S.: Cohomology of finite-dimensional pointed Hopf algebras. Proc. Lond. Math. Soc. 100, 377–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Masuoka, A.: Semisimplicity criteria for irreducible Hopf algebras in positive characteristic. Proc. Amer. Math. Soc. 137, 1925–1932 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Masuoka, A.: Hopf algebra extensions and cohomology, New directions in Hopf algebras, MSRI Publications, pp 167–209. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  15. Milne, J.S.: Basic theory of affine group schemes, unpublished lecture notes. http://www.jmilne.org/math/CourseNotes/AGS.pdf (2012)

  16. Montgomery, S.: Hopf Algebras and Their Actions on Rings CBMS Regional Conference Series in Mathematics, vol. 82. Amer. Math. Soc., Providence, RI (1993)

    Book  Google Scholar 

  17. Ng, S.-H., Schauenburg, P.: Central invariants and higher indicators for semisimple quasi-Hopf algebras. Trans. Amer. Math Soc. 360, 1839–1860 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nguyen, V.C., Wang, X.: Pointed p 3,-dimensional Hopf algebras in positive characteristic, to appear in Algebra Colloq. arXiv:1609.03952

  19. Nguyen, V.C., Wang, L., Wang, X.: Classification of connected Hopf algebras of dimension p 3 I. J. Algebra 424, 473–505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. van Oystaeyen, F., Zhang, P.: Quiver Hopf algebras. J. Algebra 280, 577–589 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quillen, D.: The spectrum of an equivalent cohomology ring: I. Ann. of Math., (2) 94, 549–572 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Scherotzke, S.: Classification of pointed rank one Hopf algebras. J. Algebra 319, 2889–2912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stefan, D., van Oystaeyen, F.: Hochschild cohomology and the coradical filtration of pointed coalgebras: applications. J. Algebra 210, 535–556 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, D.-G., Zhang, J.J., Zhuang, G.: Primitive cohomology of Hopf algebras. J. Algebra 464, 36–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, L., Wang, X.: Classification of pointed Hopf algebras of dimension p 2 over any algebraically closed field. Algebr. Represent. Theory 17, 1267–1276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, X.: Connected Hopf algebras of dimension p 2. J. Algebra 391, 93–113 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wang, X.: Isomorphism classes of finite-dimensional connected Hopf algebras in positive characteristic. Adv. Math. 281, 594–623 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Waterhouse, W.C.: Introduction to Affine Group Schemes Graduate Texts in Mathematics, vol. 66. Springer-Verlag, New York (1979)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for comments leading to improve the clarity of the Introduction section. The author also thank James Zhang for some helpful suggestions. This work was done while the first author was a Zelevinsky Research Instructor at Northeastern University; she thanks the Mathematics Department for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingting Wang.

Additional information

Presented by: Jon F. Carlson

Appendices

Appendix A: Classifications of p 3-Dimensional Connected Hopf Algebras

Let H be a p3-dimensional connected Hopf algebra over an algebraically closed field k of characteristic p > 0. Let u(P(H)) be the Hopf subalgebra of H generated by all primitive elements. The isomorphism classes of H will be presented by a quotient of the free algebra kx,y,z〉/I. The defining relation I and the comultiplication are provided in terms of the generators x, y and z. We follow the notation in [5] to write the reduced comultiplication of H by ψ, for example, ψ(x) = Δ(x) − x ⊗ 1 − 1 ⊗ x. Throughout, we denote the expressions

$$\begin{array}{@{}rcl@{}} \boldsymbol{\omega}(r)&:=&{\sum}_{1\le i\le p-1}\frac{(p-1)!}{i!\,(p-i)!}\, \left( r^{i}\otimes r^{p-i}\right), \quad \text{ for any } r \in H, \\ \mathcal Z &:=&\boldsymbol{\omega}(x)[y\otimes 1 + 1\otimes y+\boldsymbol{\omega}(x)]^{p-1}+\boldsymbol{\omega}(y), \text{ and} \\ \mathcal Z^{\prime} &:=&\boldsymbol{\omega}(x)(y\otimes 1 + 1\otimes y)^{p-1}+\boldsymbol{\omega}(y). \end{array} $$

By Nichols-Zoeller Theorem, dimension of u(P(H)) divides the dimension of H. Hence, our strategy is to consider all possible dimensions of u(P(H)) when H is p3-dimensional. The classifications in Tables 67, and 8 were detailed in our preceding paper [19], where we classified the types (A), (B), and (C) according to the dimensions p, p2 (non-commutative), and p3 of u(P(H)), respectively. For each type, we provide the isomorphism classes, their algebra and coalgebra structures, and indicate whether they are commutative, semisimple, or local. The main results in Section ?? classify those in Table 9, where u(P(H)) is a p2-dimensional commutative Hopf subalgebra of H.

Table 6 Connected p3-dim Hopf algebras, when \({\dim } u(\text {P}(H)) = p\)
Table 7 When dimu(P(H)) = p2 and u(P(H)) is non-commutative
Table 8 When \({\dim } u(\text {P}(H)) = p^{3}\)
Table 9 When p > 2, dimu(P(H)) = p2 and u(P(H)) is commutative

For the parametric family A(λ), we can choose λ = 0 when p = 2. When p > 2, A(λ)≅ A(λ) if and only if λ = γλ for some \(\gamma \in \sqrt [p^{2}+p-1]{1}\).

(B3) only appears in characteristic p > 2. In the algebra structure of (B2), we let

$$f(x)={\sum}_{i = 1}^{p-1} (-1)^{i-1}(p-i)^{-1}x^{i}. $$

(C15) only appears in p > 2 and C(λ,δ) satisfies λp− 1 = δ = ± 1. We also have C(λ,δ)≅ C(λ,δ) if and only if δ = δ and λ = λ or λλ = 1.

Hence, these tables provide the complete classification of p3-dimensional connected Hopf algebras over an algebraically closed field of prime characteristic p.

Appendix B: Some Verifications for Section 5

We provide detailed computations for some cases discussed in Section 5. The remaining cases follow using similar arguments and will be left for the readers.

2.1 B.1 Verification of Table 3 for T = (T5)

Note that z[p] = 0, x[p] = x, y[p] = 0, and ρz(x) = 0, ρz(y) = x. Let \(P=(a,b,c)\in \mathbb A^{3}\setminus \{0\}\). By Proposition 2.9(iii), a direct computation in \(H^{2}({\Omega }\, u(\mathfrak {h}))\) shows that

$$\begin{array}{@{}rcl@{}} [{\Phi}_{z}(\chi_{P})]&=& [\chi_{P}^{p}+\rho_{z}^{p-1}(\chi_{P})] = [(a\,x\otimes y+\boldsymbol{\omega}(b\,x+c\,y))^{p}+\rho_{z}^{p-1}(a\,x\otimes y)\\&&\qquad\qquad\qquad\qquad\quad +\rho_{z}^{p-1}\boldsymbol{\omega}(b\,x+c\,y)]\\ &=& [a^{p} x^{p}\otimes y^{p}+\boldsymbol{\omega}(b^{p}\,x^{p}+c^{p}\,y^{p})+a\rho_{z}^{p-2}(\rho_{z}(x)\otimes y+x\otimes \rho_{z}(y))\\&&\,\,+\rho_{z}^{p-1}\boldsymbol{\omega}(b\,x+c\,y)]\\ &=& [\boldsymbol{\omega}(b^{p}\,x)+a\,\rho_{z}^{p-2}(x\otimes x)]+[\rho_{z}^{p-1}\boldsymbol{\omega}(b\,x+c\,y)]\\ &=& [\boldsymbol{\omega}(b^{p}\,x)]+[\rho_{z}^{p-1}\boldsymbol{\omega}(b\,x+c\,y)] = [\boldsymbol{\omega}(b^{p}\,x)]. \end{array} $$

If \(P\in \mathscr{A}^{+}(\text {T})\), one sees that b = 0 since [Φz(χP)] = 0 by Remark 3.3(i). So \(P=(a,0,c)\in \mathbb A^{3}\setminus \{0\}\). Thus, Φz(χP) can be written as

$$\begin{array}{@{}rcl@{}} {\Phi}_{z}(\chi_{P})&=&\ \rho_{z}^{p-1}\boldsymbol{\omega}(c\, y)=\partial^{1}(-{\sum}_{i_{1}+\cdots+i_{p}=p-2}\, \frac{(p-2)!}{i_{1}!{\cdots} i_{p}!}\, \rho_{z}^{i_{1}}(c\, y){\cdots} \rho_{z}^{i_{p-1}}(c\, y)\rho_{z}^{1+i_{p}}(c\, y))\\ &=&\ \partial^{1}(-{\sum}_{i_{1}+\cdots+i_{p}=p-2}\, \frac{(p-2)!}{i_{1}!{\cdots} i_{p}!}\, c^{p}\, \rho_{z}^{i_{1}}(y){\cdots} \rho_{z}^{i_{p-1}}(y)\rho_{z}^{i_{p}}(x)). \end{array} $$

Since ρz(y) = x and \({\rho _{z}^{i}}(y)= 0\) for i ≥ 2, nonzero terms occur in the above summation only if ip = 0 and, for 1 ≤ kp − 1, all ik’s equal to 1 except one of the ik’s is zero. Hence,

$${\Phi}_{z}(\chi_{P})=\partial^{1}(-(p-1)(p-2)!\, c^{p}\,x^{p-1}y)=\partial^{1}(c^{p}\,x^{p-1}y). $$

Set \({\Theta }=c^{p}(x^{p-1}y-y)\in u(\mathfrak {h})^{+}\). Then Φz(χP) = 1(Θ) since 1(y) = 0 and ρz(Θ) = ρz(cp(xp− 1yy)) = cp(xp− 1ρz(y) − ρz(y)) = cp(xpx) = 0. By Proposition 3.2, (Θ,χP) is a PD datum and \(P\in \mathscr{A}^{+}(\text {T})\) by Remark 4.6. In conclusion, \(\mathscr{A}^{+}(\text {T})\) contains all points \(P=(a,0,c)\in \mathbb {A}^{3}\setminus \{0\}\).

Next, we compute the Aut(T)-action on \(\mathscr{A}^{+}(\text {T})\). Let ϕ = (γ,G) ∈Aut(T). Since R = e11, M = e21 and λ = δ = 0, by Eq. 4.1.2, G = diag(α,β) and β = αγ, where α,β,γ are nonzero scalars with αp = α. The ϕ-action on \(P=(a,0,c)\in \mathscr{A}^{+}(\text {T})\) is given via (5.0.1) by

$$\phi(a,0,c)=(\gamma^{2}\alpha^{2}a,\, 0,\, \gamma^{\frac{1+p}{p}}\alpha c). $$

A simple calculation shows that the Aut(T)-orbits of \(\mathscr{A}^{+}(\text {T})\) contains one single point and one quotient line. The single point can be represented by (1,0,0); and the quotient line is in terms of (ξ,0,1) where two points (ξ,0,1) and (ξ,0,1) are in the same orbit if and only if ξ = τξ for some (p2 − 1)/2-th root of unity τ. Furthermore, by Theorem 4.10, orbits [(1,0,0)] and [(ξ,0,1)] correspond to [(0,xy)] and [(xp− 1yy,ξxy + ω(y))] in \(\mathcal H^{2}(\text {T})\), respectively.

2.2 B.2 Verification of Table 4 for T = (T2)

Note that z[p] = 0, x[p] = y[p] = 0, and ρz(x) = y, ρz(y) = 0. Let \(P=(a,b,c,d,e)\in \mathbb A^{2}\times \mathbb A^{3}\). By Proposition 2.9 (iii),

$$\begin{array}{@{}rcl@{}} {\Phi}_{z}(\chi_{P})&=&\,\rho_{z}^{p-1}\boldsymbol{\omega}(d\, x+e\, y)\\ &=&\ \partial^{1}(-\!\!{\sum}_{i_{1}+\cdots+i_{p}=p-2}\!\ \frac{(p-2)!}{i_{1}!{\cdots} i_{p}!}\, \rho_{z}^{i_{1}}(d\,x\,+\,e\,y){\cdots} \rho_{z}^{i_{p-1}}(d\,x\,+\,e\,y)\rho_{z}^{1+i_{p}}(d\,x\,+\,e\,y))\\ &=&\ \partial^{1}(-\!\!\!{\sum}_{i_{1}+\cdots+i_{p}=p-2}\ \frac{(p-2)!}{i_{1}!{\cdots} i_{p}!}\, \rho_{z}^{i_{1}}(d\,x){\cdots} \rho_{z}^{i_{p-1}}(d\,x)\rho_{z}^{1+i_{p}}(d\,x))\\ &=&\ \partial^{1}(-{\sum}_{i_{1}+\cdots+i_{p}=p-2}\ \frac{(p-2)!}{i_{1}!{\cdots} i_{p}!}\, d^{p}\rho_{z}^{i_{1}}(x){\cdots} \rho_{z}^{i_{p-1}}(x)\rho_{z}^{i_{p}}(y))\\ &=&\ \partial^{1}(-(p-1)(p-2)!\, d^{p}\, xy^{p-1}) = \partial^{1}(d^{p}\, xy^{p-1}). \end{array} $$

Then,

$$\begin{array}{@{}rcl@{}} {\Phi}_{z}(\chi_{P})&=&\ {\chi_{P}^{p}}-\delta\chi_{P}+\rho_{z}^{p-1}(\chi_{P})=\rho_{z}^{p-1}(c\,x\otimes y)+\rho_{z}^{p-1}\boldsymbol{\omega}(d\,x+e\,y)\\ &=&\ c\rho_{z}^{p-2}(\rho_{z}(x)\otimes y+x\otimes \rho_{z}(y))+\partial^{1}(d^{p}\,xy^{p-1})=c\rho_{z}^{p-2}(y\otimes y)\\&&+\partial^{1}(d^{p}\,xy^{p-1})\\ &=&\ \partial^{2}(d^{p}\,xy^{p-1}). \end{array} $$

Suppose \(P\in \mathscr{B}^{+}(\text {T})\). By Definition 5.2, set ΨP = dpxyp− 1. Since ρz(dpxyp− 1 + ax + by) = dpyp + ay = ay = 0, one sees that a = 0. Hence, the set \(\mathscr{B}^{+}(\text {T})\) contains all points P = (0,b,c,d,e) with ΨP = dpxyp− 1, where c,d,e are not all zero.

2.3 B.3 Verification of Table 5 for T = (T2) and (T9)

Case T=(T2):

The representative points \(P\in \mathscr{B}^{+}(\text {T})\) have one of the following forms:

$$\begin{array}{@{}rcl@{}} &&(0,b,1,0,0),\quad (0,b,0,1,0),\quad (0,b,0,0,1),\quad (0,b,1,1,0),\quad (0,b,1,0,1),\\ &&\text{for some}\ b\in \textbf{k}. \end{array} $$

If P is one of the first three cases (0,b,1,0,0), (0,b,0,1,0), (0,b,0,0,1), it is easy to find some \(\phi \in \widetilde {\text {Aut}}(\text {T})\) such that the parameter b can be further taken as δ = 0,1. Hence, we obtain the first six isomorphism classes. By Lemma 5.6, for any \(\phi =(\gamma ,G)\in \widetilde {\text {Aut}}(\text {T})\), we can write

$$G=\left( \begin{array}{ll} \alpha\gamma & \beta\\ 0 & \alpha \end{array} \right) $$

for some α≠ 0. Suppose P = (0,b,1,1,0). Then by the group action (5.6.1),

$$\phi(0,b,1,1,0)=(0,\, \gamma^{p}\alpha b,\, (\alpha \gamma)^{2},\, \alpha\gamma^{\frac{1+p}{p}},\, 0). $$

Since \((\alpha \gamma )^{2}=\alpha \gamma ^{\frac {1+p}{p}}= 1\), we have αγ = ± 1. Thus γpα = ± 1. So the parameter b is parametrized by k/μ2. Suppose P = (0,b,1,0,1). Then,

$$\phi(0,b,1,0,1)=(0,\, \gamma^{p}\alpha b,\, (\alpha \gamma)^{2},\, 0,\, \alpha\gamma^{\frac{1}{p}}). $$

By similar reason that \((\alpha \gamma )^{2}=\alpha \gamma ^{\frac {1}{p}}= 1\), then γpα = 1. So b is parametrized by k.

Case T=(T9)

The representative points P have one of the following forms:

$$(a,0,1,0,0),\quad (a,0,0,0,1),\quad (a,0,1,0,1),\ \text{for some}\ b\in \textbf{k}. $$

Let P = (a,0,1,0,0). If a = 0, then P = (0,0,1,0,0). If a≠ 0, choose \(\phi =(\gamma ,G)\in \widetilde {\text {Aut}}(\text {T})\) such that

$$\gamma=a^{-\frac{p + 1}{p^{2}+p-1}},\quad G=\left( \begin{array}{ll} a^{\frac{1}{p^{2}+p-1}} & 0\\ 0& a^{\frac{p}{p^{2}+p-1}} \end{array}\right). $$

Then by the group action (5.6.1), we have ϕ(P) = (1,0,1,0,0).

Let P = (a,0,0,0,1). If a = 0, then P = (0,0,0,0,1). If a≠ 0, choose \(\phi =(\gamma ,G)\in \widetilde {\text {Aut}}(\text {T})\) such that

$$\gamma=a^{-\frac{p^{2}}{p^{3}-1}},\quad G=\left( \begin{array}{ll} a^{\frac{1}{p^{3}-1}} & 0\\ 0& a^{\frac{p}{p^{3}-1}} \end{array}\right). $$

Similarly, we have ϕ(P) = (1,0,0,0,1).

Let P = (a,0,1,0,1). For any \(\phi =(\gamma ,G)\in \widetilde {\text {Aut}}(\text {T})\), we can write G = diag(α,αp). Thus,

$$\phi(P)=(\gamma^{p}\alpha a,\, 0,\, \gamma\alpha^{p + 1},\, 0,\, \gamma^{\frac{1}{p}}\alpha^{p}). $$

Since \(\gamma \alpha ^{p + 1}=\gamma ^{\frac {1}{p}}\alpha ^{p}= 1\), so γ = αp− 1 and \(\alpha ^{p^{2}-p-1}= 1\). Hence \(\gamma ^{p}\alpha a=\alpha ^{-p^{2}-p + 1}a=\alpha ^{-2p}a\). Moreover, since 2p and p2p − 1 are coprime, the orbits containing P is parametrized by \( \textbf {k}/\mu _{(p^{2}-p-1)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.C., Wang, L. & Wang, X. Primitive Deformations of Quantum p-Groups. Algebr Represent Theor 22, 837–865 (2019). https://doi.org/10.1007/s10468-018-9800-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9800-x

Keywords

Mathematics Subject Classification (2010)

Navigation