Skip to main content
Log in

Cofiniteness with Respect to Two Ideals and Local Cohomology

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let A be a noetherian ring and \(\frak a\) be an ideal of A. We define a condition P\(_{n}(\frak a)\) for \(\frak a\)-cofiniteness of modules and we show that if A is of dimension d satisfying P\(_{d-1}(\frak a)\) for all ideals of dimension d − 1, then it satisfies P\(_{d-1}(\frak a)\) for all ideals \(\frak a\). Let M be an A-module and let n be a non-negative integer such that \({\text {Ext}_{A}^{i}}(A/\frak a,M)\) is finite for all in + 1. We show that if \(\dim \mathrm {A}/\frak a = 1\), then \(H_{\frak a}^{i}(M)\) is \(\frak a\)-cofinite for all in and if A is local with \(\dim \mathrm {A}/\frak a = 2\), then \(H_{\frak a}^{i}(M)\) is \(\frak a\)-cofinite for all i < n if and only if \(\text {Hom}_{\mathrm {A}}(\mathrm {A}/\frak a,\mathrm {H}_{\frak a}^{i}(\mathrm {M}))\) is finite for all in. Finally we prove that if M is an A-module of dimension d such that \((0:_{H_{\frak a}^{d}(M)}\frak a)\) is finite, then \(H_{\frak a}^{d}(M)\) is artinian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahmanpour, K., Naghipour, R., Sedghi, M.: Cofiniteness with respect to ideals of small dimension. Algebr. Represent. Theory 18, 369–379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brodmann, M., Sharp, R.Y.: Local cohomology: an algebraic introduction with geometric applications. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  3. Delfino, D., Marley, T.: Cofinite modules and local cohomology. J. Pure Appl. Algebra 121, 45–52 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dibaei, M.T., Yassemi, S.: Associated primes and cofiniteness of local cohomology modules. Manuscripta. Math 117, 199–205 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dibaei, M.T., Yassemi, S.: Finiteness of extension functors of local cohomology modules. Comm. Algebra 34(1), 3097–3101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grothendieck, A.: Cohomologie locale des faisceaux cohérents et th’eorémes de Lefschetz locaux et globaux (SGA 2). North-Holland, Amsterdam (1968)

    MATH  Google Scholar 

  7. Hartshorne, R.: Affine duality and cofiniteness. Invent. Math 9, 145–164 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mafi, A.: Cofiniteness of composed local cohomology modules. Forum Math 25, 173–178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Melkersson, L.: Properties of cofinite modules and applications to local cohomology. Math. Proc. Camb. Phil. Soc. 125, 417–423 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285, 649–668 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Melkersson, L.: Cofiniteness with respect to ideals of dimension one. J. Algebra 372, 459–462 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to the referee for his/her valuable and constructive comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malyha Nazari.

Additional information

Presented by Michel Van den Bergh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Sazeedeh, R. Cofiniteness with Respect to Two Ideals and Local Cohomology. Algebr Represent Theor 22, 375–385 (2019). https://doi.org/10.1007/s10468-018-9771-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-018-9771-y

Keywords

Mathematics Subject Classification (2010)

Navigation