Skip to main content
Log in

Geometric Realizations of Lusztig’s Symmetries of Symmetrizable Quantum Groups

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let U be the quantum group and f be the Lusztig’s algebra associated with a symmetrizable generalized Cartan matrix. The algebra f can be viewed as the positive part of U. Lusztig introduced some symmetries T i on U for all iI. Since T i (f) is not contained in f, Lusztig considered two subalgebras i f and i f of f for any iI, where i f={xf | T i (x) ∈ f} and \({^{i}\mathbf {f}}=\{x\in \mathbf {f}\,\,|\,\,T^{-1}_{i}(x)\in \mathbf {f}\}\). The restriction of T i on i f is also denoted by \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\). The geometric realization of f and its canonical basis are introduced by Lusztig via some semisimple complexes on the variety consisting of representations of the corresponding quiver. When the generalized Cartan matrix is symmetric, Xiao and Zhao gave geometric realizations of Lusztig’s symmetries in the sense of Lusztig. In this paper, we shall generalize this result and give geometric realizations of i f, i f and \(T_{i}:{_{i}\mathbf {f}}\rightarrow {^{i}\mathbf {f}}\) by using the language ’quiver with automorphism’ introduced by Lusztig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque, 100 (1982)

  2. Bernstein, J., Lunts, V.: Equivariant Sheaves and Functors. Springer (1994)

  3. Deng, B., Xiao, J.: Ringel-hall algebras and Lusztig’s symmetries. J. Algebra 255(2), 357–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kato, S.: An algebraic study of extension algebras. arXiv:1207.4640 (2012)

  5. Kato, S.: Poincaré-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras. Duke Math. J. 163(3), 619–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kiehl, R., Weissauer, R.: Weil Conjectures, Perverse Sheaves and l’adic Fourier Transform, vol. 42. Springer (2001)

  7. Lin, Z.: Lusztig’s geometric approach to Hall algebras. In: Representations of Finite Dimensional Algebras and Related Topics in Lie Theory and Geometry, pp 349–364. American Mathematical Society (2004)

  8. Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70(2), 237–249 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lusztig, G: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc., 447–498 (1990)

  10. Lusztig, G.: Quantum groups at roots of 1. Geom. Dedicata 35(1), 89–113 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Lusztig, G: Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc., 365–421 (1991)

  12. Lusztig, G.: Braid group action and canonical bases. Adv. Math. 122(2), 237–261 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lusztig, G.: Canonical bases and Hall algebras. In: Representation Theories and Algebraic Geometry, pp 365–399. Springer (1998)

  14. Lusztig, G.: Introduction to Quantum Groups. Springer (2010)

  15. Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101(1), 583–591 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ringel, C.M.: PBW-bases of quantum groups. J. Reine Angew. Math. 470, 51–88 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Sevenhant, B., Van den Bergh, M.: On the double of the Hall algebra of a quiver. J. Algebra 221(1), 135–160 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiao, J., Yang, S.: BGP-reflection functors and Lusztig’s symmetries: a Ringel-Hall algebra approach to quantum groups. J. Algebra 241(1), 204–246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiao, J., Zhao, M.: BGP-reflection functors and Lusztig’s symmetries of modified quantized enveloping algebras. Acta Math. Sin. 29(10), 1833–1856 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao, J., Zhao, M.: Geometric realizations of Lusztig’s symmetries. To appear in J Algebra (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhao.

Additional information

Presented by Michel Van den Bergh.

This work was supported by the National Natural Science Foundation of China [grant numbers 11526037,11501032]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M. Geometric Realizations of Lusztig’s Symmetries of Symmetrizable Quantum Groups. Algebr Represent Theor 20, 923–950 (2017). https://doi.org/10.1007/s10468-017-9669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-017-9669-0

Keywords

Mathematics Subject Classification (2010)

Navigation