Skip to main content
Log in

Bounding Cohomology for Finite Groups and Frobenius Kernels

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

Let G be a simple, simply connected algebraic group defined over an algebraically closed field k of positive characteristic p. Let σ :GG be a strict endomorphism (i.e., the subgroup G(σ) of σ-fixed points is finite). Also, let G σ be the scheme-theoretic kernel of σ, an infinitesimal subgroup of G. This paper shows that the dimension of the degree m cohomology group Hm(G(σ),L) for any irreducible k G(σ)-module L is bounded by a constant depending on the root system Φ of G and the integer m. These bounds are actually established for the degree m extension groups \( Ext^{m}_{G(\sigma )}(L,L^{\prime })\) between irreducible k G(σ)-modules \(L,L^{\prime }\), with a similar result holding for G σ . In these Extm results, the bounds also depend on the highest weight associated to L, but are, nevertheless, independent of the characteristic p.

We also show that one can find bounds independent of the prime for the Cartan invariants of G(σ) and G σ , and even for the lengths of the underlying PIMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.: Extensions of modules for algebraic groups. Amer. J. Math. 106, 489–504 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersen, H., Jantzen, J., Soergel, W.: Representations of quantum groups at a pth root of unity and of semisimple groups in characteristic p, vol. 220. Astérique (1994)

  3. Bendel, C., Boe, B., Drupieski, C., Nakano, D., Parshall, B., Pillen, C., Wright, C.: Bounding the dimensions of rational cohomology groups, Developments and Retrospectives in Lie Theory, Algebraic Methods, Developments in Mathematics, vol. 38, pp 51–69. Springer (2014)

  4. Bendel, C., Nakano, D., Pillen, C.: Extensions for Frobenius kernels. J. Algebra 272(2), 476–511 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bendel, C., Nakano, D., Pillen, C.: Extensions for finite groups of Lie type II: Filtering the truncated induction functor, Representations of algebraic groups, quantum groups, and Lie algebras, Contemp. Math., vol. 413, American Mathematical Society, Providence, RI, 2006, pp. 1–23

  6. Bendel, C., Nakano, D., Pillen, C.: Second cohomology groups for Frobenius kernels and related structures. Adv. Math. 209(1), 162–197 (2007)

  7. Bendel, C., Nakano, D., Pillen, C.: On the vanishing ranges for the cohomology of finite groups of Lie type. Int. Math. Res. Not. (2011). doi:10.1093/imrn/rnr130

  8. Bonafé, C., Rouquier, R.: Catégories dérivées et variétés de Deligne-Lusztig. Publ. Math. I.H.E.S. 97, 1–59 (2003)

    Article  Google Scholar 

  9. Cline, E., Parshall, B., Scott, L.: A Mackey imprimitivity theory for algebraic groups. Math. Z. 182(4), 447–471 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cline, E., Parshall, B., Scott, L.: Reduced standard modules and cohomology. Trans. Amer. Math. Soc. 361(10), 5223–5261 (2009)

  11. Gorenstein, D., Lyons, R., Solomon, R.: The Classification of the Finite Simple Groups, vol. 40, Mathematical Surveys and Monographs, no. 3. American Mathematical Society (1998)

  12. Guralnick, R.: The dimension of the first cohomology groups. Lect. Notes Math. 1178, 94–97 (1986)

    MathSciNet  Google Scholar 

  13. Guralnick, R., Hodge, T., Parshall, B., Scott, L.: AIM workshop: counterexample to Wall’s conjecture (2012). http://aimath.org/news/wallsconjecture/wall.conjecture.pdf

  14. Guralnick, R., Hoffman, C.: The first cohomology group and generation of simple groups, Groups and geometries (Siena, 1996), Trends Math., Birkhäuser, Basel (1998)

  15. Guralnick, R., Kantor, W., Kassabov, M., Lubotzky, A.: Presentations of finite simple groups: profinite and cohomological approaches. Groups Geom. Dyn. 1(4), 469–523 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Presentations of finite simple groups: a quantitative approach. J. Amer. Math. Soc. 21(3), 711–774 (2008)

  17. Guralnick, R., Tiep, P.: First cohomology groups of Chevalley groups in cross characteristic. Ann. Math. (2) 174(1), 543–559 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hiss, G.: On a question of Brauer in modular representation theory of finite groups, Sūrikaisekikenkyūsho Kōkyūroku (2000), no. 1149, 21–29, Representation theory of finite groups and related topics (Japanese) (Kyoto, 1998)

  19. Humphreys, J.: Modular representations of finite groups of Lie type, London Mathematical Society Lecture Note Series, vol. 326. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  20. Jantzen, J.C.: Representations of Algebraic Groups, second ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI (2003)

  21. Koppinen, M.: Good bimodule filtrations for coordinate rings. J. London Math. Soc. 30(2), 244–250 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Parker, A., Stewart, D.: First cohomology groups for finite groups of Lie type in defining characteristic. Bull. London Math. Soc. 46(2), 227–238 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Parshall, B., Scott, L.: Bounding Ext for modules for algebraic groups, finite groups and quantum groups. Adv. Math. 226(3), 2065–2088 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Parshall, B., Scott, L.: Cohomological growth rates and Kazhdan-Lusztig polynomials. Israel J. Math. 191(1), 85–110 (2012)

  25. Parshall, B., Scott, L., Stewart, D.: Shifted generic cohomology. Composito Math. 149(10), 1765–1788 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pillen, C.: The first Cartan invariant of a finite group of Lie type for large p. J. Algebra 174, 934–947 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Scott, L.: Some new examples in 1-cohomology. J. Algebra 260(1), 416–425 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Scott, L., Sprowl, T.: Computing individual Kazhdan–Lusztig basis elements. arXiv:1309.7265 (2013)

  29. Sin, P.: Extensions of simple modules for special algebraic groups. J. Algebra 170(3), 1011–1034 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Springer, T., Steinberg, R.: Conjugacy classes. Lect. Notes Math. 131, 167–266 (1970)

    MathSciNet  Google Scholar 

  31. Steinberg, R.: Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc. 80 (1968). American Mathematical Society

  32. Stewart, D.: Unbounding Ext. J. Algebra 365, 1–11 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stewart, D.: On extensions for Ree groups of type F 4. arXiv:1304.2544 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel K. Nakano.

Additional information

Presented by Jon F. Carlson.

Research of the fifth author was supported in part by NSF grant DMS-1001900

Research of the second author was supported in part by NSF grants DMS-1002135 and DMS-1402271

Research of the third author was supported in part by NSF grant DMS-1001900

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendel, C.P., Nakano, D.K., Parshall, B.J. et al. Bounding Cohomology for Finite Groups and Frobenius Kernels. Algebr Represent Theor 18, 739–760 (2015). https://doi.org/10.1007/s10468-014-9514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10468-014-9514-7

Keywords

Mathematics Subject Classification (2010)

Navigation