Skip to main content
Log in

An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Moth flame optimization (MFO) algorithm is a relatively new nature-inspired optimization algorithm based on the moth’s movement towards the moon. Premature convergence and convergence to local optima are the main demerits of the algorithm. To avoid these drawbacks, a modified dynamic opposite learning-based MFO algorithm (m-DMFO) is presented in this paper, incorporating a modified dynamic opposite learning (DOL) strategy. To validate the performance of the proposed m-DMFO algorithm, it is tested via twenty-three benchmark functions, IEEE CEC’2014 test functions and compared with a wide range of optimization algorithms. Moreover, Friedman rank test, Wilcoxon rank test, convergence analysis, and diversity measurement have been conducted to measure the robustness of the proposed m-DMFO algorithm. The numerical results show that, the proposed m-DMFO algorithm achieved superior results in more than 90% occasions. The proposed m-DMFO achieves the best rank in Friedman rank test and Wilcoxon rank test respectively. In addition, four engineering design problems have been solved by the suggested m-DMFO algorithm. According to the results, it achieves extremely impressive results, which also illustrates that the algorithm is qualified in solving real-world problems. Analyses of numerical results, diversity measure, statistical tests and convergence results ensure the enhanced performance of the proposed m-DMFO algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbassi R, Abbassi A, Heidari AA, Mirjalili S (2019) An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers Manage 179:362–372

    Article  Google Scholar 

  • Abd Elaziz M, Ewees AA, Ibrahim RA, Lu S (2020) Opposition-based moth-flame optimization improved by differential evolution for feature selection. Math Comput Simul 168:48–75

    Article  MathSciNet  MATH  Google Scholar 

  • Ali MM, Törn A, Viitanen S (1997) A numerical comparison of some modified controlled random search algorithms. J Glob Optim 11(4):377–385

  • Apinantanakon W, Sunat K (2017) Omfo: a new opposition-based moth-flame optimization algorithm for solving unconstrained optimization problems. In: International conference on computing and information technology, pp 22–31

  • Arora JS (2004) Introduction to Optimum Design. Academic Press, 2004

  • Arora S, Singh S (2015) Butterfly algorithm with levy flights for global optimization. In: 2015 international conference on signal processing, computing and control (ISPCC), pp 220–224

  • Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: Theory. Int J Numer Methods Eng 21(9):1583–1599

    Article  MATH  Google Scholar 

  • Buch H, Trivedi IN, Jangir P (2017) Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Eng 4(1):1286731. https://doi.org/10.1080/23311916.2017.1286731

    Article  Google Scholar 

  • Chakraborty S, Kumar Saha A, Sharma S, Mirjalili S, Chakraborty R (2021) A novel enhanced whale optimization algorithm for global optimization. Comput Ind Eng 153:107086. https://doi.org/10.1016/j.cie.2020.107086

    Article  Google Scholar 

  • Chen C, Wang X, Yu H, Wang M, Chen H (2021) Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms. Math Comput Simul 188:291–318. https://doi.org/10.1016/j.matcom.2021.04.006

    Article  MathSciNet  MATH  Google Scholar 

  • Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  • Dabba A, Tari A, Meftali S, Mokhtari R (2021) Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst Appl 166:114012

    Article  Google Scholar 

  • Dash SP, Subhashini KR, Satapathy JK (2020) Optimal location and parametric settings of FACTS devices based on JAYA blended moth flame optimization for transmission loss minimization in power systems. Microsyst Technol 26(5):1543–1552

    Article  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Dhiman G, Kumar V (2017) Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Adv Eng Softw 114:48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014

    Article  Google Scholar 

  • Ergezer M, Simon D, Du D (2009) Oppositional biogeography-based optimization. In: 2009 IEEE international conference on systems, man and cybernetics, pp 1009–1014. https://doi.org/10.1109/ICSMC.2009.5346043

  • Faris H, Ala’M A-Z, Heidari AA, Aljarah I, Mafarja M, Hassonah MA, Fujita H (2019) An intelligent system for spam detection and identification of the most relevant features based on evolutionary random weight networks. Inf Fusion 48:67–83

    Article  Google Scholar 

  • Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35. https://doi.org/10.1007/s00366-011-0241-y

    Article  Google Scholar 

  • Gu H, Wang X (2016) Application of NSGA-II algorithm in the design of car body lateral crashworthiness. Destech Trans Mater Sci Eng, Icmeat. https://doi.org/10.12783/dtmse/icmeat2016/6083

    Article  Google Scholar 

  • Gu W, Xiang G (2021) Improved moth flame optimization with multioperator for solving real-world optimization problems. In: 2021 IEEE 5th advanced information technology, electronic and automation control conference (IAEAC), vol. 5, pp 2459–2462. https://doi.org/10.1109/IAEAC50856.2021.9390876

  • Gupta S, Deep K (2020) A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl Intell 50(4):993–1026. https://doi.org/10.1007/s10489-019-01570-w

    Article  Google Scholar 

  • Gupta D, Ahlawat AK, Sharma A, Rodrigues JJPC (2020) Feature selection and evaluation for software usability model using modified moth-flame optimization. Computing 102(6):1503–1520. https://doi.org/10.1007/s00607-020-00809-6

    Article  MathSciNet  Google Scholar 

  • He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73

    Article  Google Scholar 

  • Hongwei L, Jianyong L, Liang C, Jingbo B, Yangyang S, Kai L (2019) Chaos-enhanced moth-flame optimization algorithm for global optimization. J Syst Eng Electron 30(6):1144–1159. https://doi.org/10.21629/JSEE.2019.06.10

    Article  Google Scholar 

  • Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150. https://doi.org/10.1504/IJMMNO.2013.055204

    Article  MATH  Google Scholar 

  • Kadry S, Rajinikanth V, Raja N, Jude Hemanth D, Hannon N, Raj ANJ (2021) Evaluation of brain tumor using brain MRI with modified-moth-flame algorithm and Kapur’s thresholding: a study. Evol Intel 14(2):1053–1063

    Article  Google Scholar 

  • Kaur K, Singh U, Salgotra R (2020) An enhanced moth flame optimization. Neural Comput Appl 32(7):2315–2349

    Article  Google Scholar 

  • Kaveh A, Ilchi Ghazaan M, Saadatmand F (2021) Colliding bodies optimization with Morlet wavelet mutation and quadratic interpolation for global optimization problems. Eng Comput. https://doi.org/10.1007/s00366-020-01236-z

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—International conference on neural networks, Perth, Australia, 1995, 1942–1948

  • Khairuzzaman AKM, Chaudhury S (2020) Modified moth-flame optimization algorithm-based multilevel minimum cross entropy thresholding for image segmentation. Int J Swarm Intell Res 11(4):123–139. https://doi.org/10.4018/IJSIR.2020100106

    Article  Google Scholar 

  • Khalilpourazari S, Khalilpourazary S (2019) An efficient hybrid algorithm based on Water Cycle and Moth-Flame Optimization algorithms for solving numerical and constrained engineering optimization problems. Soft Comput 23(5):1699–1722

    Article  Google Scholar 

  • Khan BS, Raja MAZ, Qamar A, Chaudhary NI (2021) Design of moth flame optimization heuristics for integrated power plant system containing stochastic wind. Appl Soft Comput 104:107193

    Article  Google Scholar 

  • Kigsirisin S, Miyauchi H (2021) Short-term operational scheduling of unit commitment using binary alternative moth-flame optimization. IEEE Access 9:12267–12281

  • Li L-J, Huang ZB, Liu F, Wu QH (2007) A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 85(7–8):340–349

    Article  Google Scholar 

  • Li Z, Zhou Y, Zhang S, Song J (2016) Lévy-flight moth-flame algorithm for function optimization and engineering design problems. Math Prob Eng 2016:1423930

  • Li C, Niu Z, Song Z, Li B, Fan J, Liu PX (2018) A double evolutionary learning moth-flame optimization for real-parameter global optimization problems. IEEE Access 6:76700–76727

    Article  Google Scholar 

  • Li L-L, Zhao X, Tseng M-L, Tan RR (2020) Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J Clean Prod 242:118447. https://doi.org/10.1016/j.jclepro.2019.118447

    Article  Google Scholar 

  • Li Z, Zeng J, Chen Y, Ma G, Liu G (2021) Death mechanism-based moth–flame optimization with improved flame generation mechanism for global optimization tasks. Expert Syst Appl 183:115436. https://doi.org/10.1016/j.eswa.2021.115436

    Article  Google Scholar 

  • Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University Zhengzhou China and Technical Report. Nanyang Technological University, Singapore

  • Lin GQ, Li LL, Tseng ML, Liu HM, Yuan DD, Tan RR (2020) An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J Clean Prod 253:119966

  • Ma L, Wang C, Xie N, Shi M, Ye Y, Wang L (2021) Moth-flame optimization algorithm based on diversity and mutation strategy. Appl Intell. https://doi.org/10.1007/s10489-020-02081-9

    Article  Google Scholar 

  • Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  • McCarthy JF (1989) Block-conjugate-gradient method. Phys Rev D 40(6):2149

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    Article  MathSciNet  MATH  Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: A sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133

    Article  Google Scholar 

  • Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513

    Article  Google Scholar 

  • Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  • Mohanty B (2019) Performance analysis of moth flame optimization algorithm for AGC system. Int J Model Simul 39(2):73–87. https://doi.org/10.1080/02286203.2018.1476799

    Article  Google Scholar 

  • Morales-Castañeda B, Zaldívar D, Cuevas E, Fausto F, Rodríguez A (2020) A better balance in metaheuristic algorithms: does it exist? Swarm Evol Comput 54:100671. https://doi.org/10.1016/j.swevo.2020.100671

    Article  Google Scholar 

  • Muduli D, Dash R, Majhi B (2020) Automated breast cancer detection in digital mammograms: a moth flame optimization based ELM approach. Biomed Signal Process Control 59:101912

    Article  Google Scholar 

  • Nama S (2022) A novel improved SMA with quasi reflection operator: performance analysis, application to the image segmentation problem of Covid-19 chest X-ray images. Appl Soft Comput 118:108483. https://doi.org/10.1016/j.asoc.2022.108483

    Article  Google Scholar 

  • Nama S, Saha AK, Sharma S (2020) A hybrid TLBO algorithm by quadratic approximation for function optimization and its application. In: Balas VE, Kumar R, Srivastava R (eds) Recent trends and advances in artificial intelligence and internet of things. Springer, Cham, pp 291–341. https://doi.org/10.1007/978-3-030-32644-9_30

    Chapter  Google Scholar 

  • Nama S, Sharma S, Saha AK, Gandomi AH (2021) A quantum mutation-based backtracking search algorithm. Artif Intell Rev. https://doi.org/10.1007/s10462-021-10078-0

    Article  Google Scholar 

  • Pelusi D, Mascella R, Tallini L, Nayak J, Naik B, Deng Y (2020) An improved moth-flame optimization algorithm with hybrid search phase. Knowl-Based Syst 191:105277

    Article  Google Scholar 

  • Qais MH, Hasanien HM, Alghuwainem S (2020) Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators. Appl Soft Comput 86:105937. https://doi.org/10.1016/j.asoc.2019.105937

    Article  Google Scholar 

  • Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation, pp 2229–2236. https://doi.org/10.1109/CEC.2007.4424748

  • Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7(1):19–34

    MathSciNet  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  • Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput 13(5):2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  • Sahoo SK, Saha AK, Sharma S, Mirjalili S, Chakraborty S (2022) An enhanced moth flame optimization with mutualism scheme for function optimization. Soft Comput 26(6):2855–2882. https://doi.org/10.1007/s00500-021-06560-0

    Article  Google Scholar 

  • Sapre S, Mini S (2021a) A differential moth flame optimization algorithm for mobile sink trajectory. Peer-to-Peer Netw Appl 14(1):44–57

    Article  Google Scholar 

  • Sapre S, Mini S (2021b) Emulous mechanism based multi-objective moth–flame optimization algorithm. J Parallel Distrib Comput 150:15–33

    Article  Google Scholar 

  • Shan W, Qiao Z, Heidari AA, Chen H, Turabieh H, Teng Y (2021) Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl-Based Syst 214:106728. https://doi.org/10.1016/j.knosys.2020.106728

    Article  Google Scholar 

  • Sharma S, Saha AK (2020) m-MBOA: a novel butterfly optimization algorithm enhanced with mutualism scheme. Soft Comput 24(7):4809–4827. https://doi.org/10.1007/s00500-019-04234-6

    Article  Google Scholar 

  • Sharma S, Chakraborty S, Saha AK, Nama S, Sahoo SK (2022) mLBOA: a modified butterfly optimization algorithm with lagrange interpolation for global optimization. J Bionic Eng. https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  • Singh D, Agrawal S (2016) Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems. Appl Soft Comput 38:1040–1048

    Article  Google Scholar 

  • Singh P, Prakash S (2019) Optical network unit placement in Fiber-Wireless (FiWi) access network by Whale Optimization Algorithm. Opt Fiber Technol 52:101965. https://doi.org/10.1016/j.yofte.2019.101965

    Article  Google Scholar 

  • Soliman GM, Khorshid MM, Abou-El-Enien TH (2016) Modified moth-flame optimization algorithms for terrorism prediction. Int J Appl Innov Eng Manag 5:47–58

  • Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Suja KR (2021) Mitigation of power quality issues in smart grid using levy flight based moth flame optimization algorithm. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02626-3

    Article  Google Scholar 

  • Tang A, Zhou H, Han T, Xie L (2021) A modified manta ray foraging optimization for global optimization problems. IEEE Access 9:128702–128721. https://doi.org/10.1109/ACCESS.2021.3113323

    Article  Google Scholar 

  • Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06), vol 1, pp 695–701. https://doi.org/10.1109/CIMCA.2005.1631345

  • Tumar I, Hassouneh Y, Turabieh H, Thaher T (2020) Enhanced binary moth flame optimization as a feature selection algorithm to predict software fault prediction. IEEE Access 8:8041–8055

    Article  Google Scholar 

  • Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714. https://doi.org/10.1016/j.ins.2011.03.016

    Article  MathSciNet  Google Scholar 

  • Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

  • Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  • Wu G (2016) Across neighborhood search for numerical optimization. Inf Sci 329:597–618

    Article  MATH  Google Scholar 

  • Wu G, Pedrycz W, Suganthan PN, Mallipeddi R (2015) A variable reduction strategy for evolutionary algorithms handling equality constraints. Appl Soft Comput 37:774–786

    Article  Google Scholar 

  • Xu H, Erdbrink CD, Krzhizhanovskaya VV (2015) How to speed up optimization? Opposite-center learning and its application to differential evolution. Procedia Comput Sci 51:805–814. https://doi.org/10.1016/j.procs.2015.05.203

    Article  Google Scholar 

  • Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C (2019a) An efficient chaotic mutative moth-flame-inspired optimizer for global optimization tasks. Expert Syst Appl 129:135–155. https://doi.org/10.1016/j.eswa.2019.03.043

    Article  Google Scholar 

  • Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019b) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203. https://doi.org/10.1016/j.ins.2019.04.022

    Article  MathSciNet  Google Scholar 

  • Xu Y, Yang Z, Li X, Kang H, Yang X (2020) Dynamic opposite learning enhanced teaching–learning-based optimization. Knowl-Based Syst 188:104966. https://doi.org/10.1016/j.knosys.2019.104966

    Article  Google Scholar 

  • Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver press, Bristol

    Google Scholar 

  • Yang Y, Zong X, Yao D, Li S (2017) Improved Alopex-based evolutionary algorithm (AEA) by quadratic interpolation and its application to kinetic parameter estimations. Appl Soft Comput 51:23–38

    Article  Google Scholar 

  • Yildiz AR, Abderazek H, Mirjalili S (2020) A comparative study of recent non-traditional methods for mechanical design optimization. Arch Comput Methods Eng 27(4):1031–1048. https://doi.org/10.1007/s11831-019-09343-x

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Qin H, Yao L, Liu Y, Jiang Z, Feng Z, Ouyang S (2020) Improved multi-objective moth-flame optimization algorithm based on R-domination for cascade reservoirs operation. J Hydrol 581:124431

    Article  Google Scholar 

  • Zhao X, Fang Y, Liu L, Li J, Xu M (2020) An improved moth-flame optimization algorithm with orthogonal opposition-based learning and modified position updating mechanism of moths for global optimization problems. Appl Intell 50(12):4434–4458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Apu Kumar Saha or Mohammad Masdari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Formulation of 23 benchmark functions

Sl. no.

Functions

Formulation of objective functions

d

Fmin

Search space

Unimodal benchmark functions

F1

Beale

\(\mathrm{f}\left(\mathrm{x}\right)={\left(1.5-{\mathrm{x}}_{1}+{{\mathrm{x}}_{1}\mathrm{x}}_{2}\right)}^{2}+{\left(2.25-{\mathrm{x}}_{1}+{\mathrm{x}}_{1}{x}_{2}^{2}\right)}^{2}+{ \left(2.625-{\mathrm{x}}_{1}+{\mathrm{x}}_{1}{x}_{2}^{3}\right)}^{2}\)

2

0

[− 100, 100]

F2

Booth

\(\mathrm{f}\left(\mathrm{x}\right)={\left(2{\mathrm{x}}_{1}+{\mathrm{x}}_{2}-5\right)}^{2}+{\left({\mathrm{x}}_{1}+2{\mathrm{x}}_{2}-7\right)}^{2}\)

2

0

[− 10, 10]

F3

Matyas

\(\mathrm{f}\left(\mathrm{x}\right)=0.26\left({{\mathrm{x}}_{1}}^{2}+{{\mathrm{x}}_{2}}^{2}\right)-0.48{\mathrm{x}}_{1}{\mathrm{x}}_{2}\)

2

0

[− 10, 10]

F4

Sumsquare

\(f\left(x\right)= \sum\limits_{i=1}^{D}{{x}_{i}}^{2}\times i\)

30

0

[− 10, 10]

F5

Zettl

\(\mathrm{f}\left(\mathrm{x}\right)={\left(\mathrm{x}-{1}^{2}+\mathrm{x}-{2}^{2}-2{\mathrm{x}}_{1}\right)}^{2}+0.25{\mathrm{x}}_{1}\)

2

− 0.00379

[− 1, 5]

F6

Leon

\(\mathrm{f}\left(\mathrm{x}\right)= 100{\left({\mathrm{x}}_{2}-{{\mathrm{x}}_{1}}^{3}\right)}^{2}+{\left(1-{\mathrm{x}}_{1}\right)}^{2}\)

2

0

[− 1.2, 1.2]

F7

Zakhrov

\(\mathrm{f}\left(\mathrm{x}\right)=\sum\limits_{\mathrm{j}=1}^{\mathrm{d}}{{\mathrm{x}}_{\mathrm{i}}}^{2}+{\left(0.5\sum\limits_{\mathrm{j}=1}^{\mathrm{d}}{\mathrm{jx}}_{\mathrm{j}}\right)}^{2}+{\left(0.5\sum\limits_{\mathrm{j}=1}^{\mathrm{d}}{\mathrm{jx}}_{\mathrm{j}}\right)}^{4}\)

2

0

[− 5, 10]

Multimodal benchmark functions

F8

Bohachevsky

\(\mathrm{f}\left(\mathrm{x}\right)={{\mathrm{x}}_{1}}^{2}+2{{\mathrm{x}}_{2}}^{2}-0.3\mathrm{cos}\left(3\uppi {\mathrm{x}}_{1}\right)-0.3\)

2

0

[− 100, 100]

F9

Bohachevsky 3

\(\mathrm{f}\left(\mathrm{x}\right)={{\mathrm{x}}_{1}}^{2}+2{{\mathrm{x}}_{2}}^{2}-0.3\mathrm{cos}\left(3\uppi {\mathrm{x}}_{1}\right)-0.3\)

2

0

[− 50, 50]

F10

Levy

\(f\left(x\right)={sin}^{2}\left(\pi {x}_{1}\right)+\sum\limits_{i=1}^{D-1}{\left({x}_{i}-1\right)}^{2}\left[1+10{sin}^{2}\left(\pi {x}_{i}+1\right)\right]+{\left({x}_{D}-1\right)}^{2}\left[1+{sin}^{2}\left(2\pi {x}_{D}\right)\right]\)

Where, \({x}_{i}=1+\frac{1}{4}\)(\({x}_{i}-1), i=\mathrm{1,2},\dots \dots \dots D\)

30

0

[− 10, 10]

F11

Michalewicz

\(f\left(x\right)=-\sum\limits_{i=1}^{D}\mathrm{sin}{(x}_{i}){sin}^{2m}(\frac{{i{x}_{i}}^{2}}{\pi })\), m = 10

10

− 9.66015

[0, \(\pi\)]

F12

Alpine

\(f\left(x\right)=\sum\limits_{i=1}^{D}\left|{x}_{i}\mathrm{sin}{(x}_{i})+0.1{x}_{i}\right|\)

30

0

[− 10, 10]

F13

Schaffers

\(f\left(x\right)=0.5+\frac{{sin}^{2}\left({{x}_{1}}^{2}+{{x}_{2}}^{2}\right)-0.5}{{\left[1+0.001\left({{x}_{1}}^{2}+{{x}_{2}}^{2}\right)\right]}^{2}}\)

2

0

[− 100, 100]

F14

Powersum

\(f\left(x\right)= \sum\limits_{i=1}^{D}\left[{\left(\sum\limits_{k=1}^{D}{{(x}_{k}}^{i})-{b}_{i}\right)}^{2}\right]\)

30

0

[− 10, 10]

F15

Penalized2

\(f\left(x\right)=0.1\left\{ 10{sin}^{2}\left(\pi {x}_{i}\right)+\sum\limits_{i=1}^{D-1}{\left({x}_{i}-1\right)}^{2}[1+10{sin}^{2}\left(3\pi {x}_{i+1}\right)+{\left({x}_{D}-1\right)}^{2}[1+{sin}^{2}\left(2\pi {x}_{D}\right)]]\right\}+\sum\limits_{i=1}^{D}u\left({x}_{i},\mathrm{5,100,4}\right)\)

30

0

[− 50, 50]

F16

Kowalik

\(\mathrm{f}\left(\mathrm{x}\right)=\sum\limits_{\mathrm{j}=1}^{11}{\left[{\mathrm{a}}_{\mathrm{j}}-\frac{{\mathrm{x}}_{1}\left({{\mathrm{b}}_{\mathrm{j}}}^{2}+{\mathrm{b}}_{\mathrm{j}}{\mathrm{x}}_{2}\right)}{({{\mathrm{b}}_{\mathrm{j}}}^{2}-{\mathrm{b}}_{\mathrm{j}}{\mathrm{x}}_{3}-{\mathrm{x}}_{4}}\right]}^{2}\)

4

0.0003075

[− 5, 5]

F17

Foxholes

\(\mathrm{f}\left(\mathrm{x}\right)={\left[\frac{1}{500}+ \sum\limits_{\mathrm{j}=1}^{25}\frac{1}{\mathrm{j}}+\sum\limits_{\mathrm{i}=1}^{\mathrm{D}}{\left({\mathrm{x}}_{\mathrm{i}}-{\mathrm{a}}_{\mathrm{ij}}\right)}^{6}\right]}^{-1}\)

2

3

[− 65, 65]

Fixed dimension multimodal benchmark functions

F18

Goldstein and Price

\(f\left(x\right)=\left[1+{\left(1+{x}_{1}+{x}_{2}\right)}^{2}\left(10-14{x}_{1}-14{x}_{2}+6{x}_{1}{x}_{2}+3{{x}_{1}}^{2}+3{{x}_{2}}^{2}\right)\right]\times \left[30+\left(2{x}_{1}-3{{x}_{2}}^{2}\right)\left(18-32{x}_{1}+12{{x}_{1}}^{2}+48{x}_{2}-36{x}_{1}{x}_{2}+27{{x}_{2}}^{2}\right)\right]\)

2

3

[− 2, 2]

F19

Hartmann3

\(f\left(x\right)=-\sum\limits_{i=1}^{4}{\alpha }_{i}\mathrm{exp}(-\sum\limits_{j=1}^{3}{a}_{ij}{\left({x}_{j-{b}_{ij}}\right)}^{2})\)

3

− 3.86

[0, 1]

F20

Hartmann6

\(f\left(x\right)=-\sum\limits_{i=1}^{4}{\alpha }_{i}\mathrm{exp}(-\sum\limits_{j=1}^{6}{a}_{ij}{\left({x}_{j-{b}_{ij}}\right)}^{2})\)

6

− 3.32

[0, 1]

F21

Shekel 5

\(\mathrm{f}\left(\mathrm{x}\right)=-\sum\limits_{\mathrm{j}=1}^{5}{\left[\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right){\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right)}^{\mathrm{T}}+{\mathrm{c}}_{\mathrm{j}}\right]}^{-1}\)

4

− 10.1499

[0, 10]

F22

Shekel-7

\(\mathrm{f}\left(\mathrm{x}\right)=-\sum\limits_{\mathrm{j}=1}^{7}{\left[\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right){\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right)}^{\mathrm{T}}+{\mathrm{c}}_{\mathrm{j}}\right]}^{-1}\)

4

− 10.3999

[0, 10]

F23

Shekel-10

\(\mathrm{f}\left(\mathrm{x}\right)=-\sum\limits_{\mathrm{j}=1}^{10}{\left[\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right){\left(\mathrm{x}-{\mathrm{a}}_{\mathrm{i}}\right)}^{\mathrm{T}}+{\mathrm{c}}_{\mathrm{j}}\right]}^{-1}\)

4

− 10.5319

[0, 10]

Appendix 2: Three-bar truss design problem

$$\overrightarrow{{\varvec{k}}}=\left\{{k}_{1}, {k}_{2},\right\}$$

    Objective function:

        

$$Min. f\left(k\right)=L\left\{{k}_{2}+2\sqrt{2}{k}_{1}\right\}$$

    Subject to:

$${h}_{1}\left(k\right)=\frac{{k}_{2}}{2{k}_{2}{k}_{1}+\sqrt{2}{k}_{1}^{2}} P-\sigma \le 0,$$
$${h}_{2}\left(k\right)=\frac{{k}_{2}+\sqrt{2}{k}_{1}}{2{k}_{2}{k}_{1}+\sqrt{2}{k}_{1}^{2}} P-\sigma \le 0,$$
$${h}_{3}\left(k\right)=\frac{1}{{k}_{1}+\sqrt{2}{k}_{2}}P-\sigma \le 0,$$

where, \(0\le {k}_{1},{k}_{2}\le 1,and\) \(P=2, L=100 \, \& \, \sigma =2.\)

Appendix 3: Tension/compression spring design problem

Let us consider

\(\overrightarrow{{\varvec{x}}}=\left[{x}_{1} {x}_{2} {x}_{3}\right]\) = [d D N],

Minimize f (\(\overrightarrow{{\varvec{x}}}\)) =\({{x}_{1}}^{2}{x}_{2}\) (2 + \({x}_{3}\)),

Subjected to \({g}_{1}\left(\overrightarrow{{\varvec{x}}}\right)=\) 71,785 \({{x}_{1}}^{4}-{{x}_{2}}^{3}{x}_{3}\le 0\)

$${g}_{2}\left(\overrightarrow{{\varvec{x}}}\right)= \frac{4{{x}_{2}}^{2}-{{x}_{1}x}_{2}}{12566\left({x}_{2}{{x}_{1}}^{3}-{{x}_{1}}^{4}\right)}-\frac{1}{5108{{x}_{1}}^{2}}\le 0$$
$${g}_{3}\left(\overrightarrow{{\varvec{x}}}\right)={{x}_{2}}^{2}{x}_{3}-140.45{x}_{1}\le 0$$
$${g}_{4}\left(\overrightarrow{{\varvec{x}}}\right)={x}_{1}+{x}_{2}-1.5\le 0$$

where, \(0.05\le {x}_{1}\le 2.00\), \(0.25\le {x}_{2}\le 1.30\), 2 \(\le {x}_{3}\le 15.0\)

Appendix 4: Cantilever beam design problem

Let us consider

\(\overrightarrow{{\varvec{x}}}=\left[{x}_{1} {x}_{2} {x}_{3} {x}_{4} {x}_{5}\right]\) = [d D N],

Minimize f (\(\overrightarrow{{\varvec{x}}}\)) = \(0.6224\left({x}_{1}+ {x}_{2}+{x}_{3}+{x}_{4}+ {x}_{5}\right)\), Subjected to g \(\left(\overrightarrow{{\varvec{x}}}\right)= \frac{61}{{{x}_{1}}^{3}}+ \frac{27}{{{x}_{2}}^{3}}+\frac{19}{{{x}_{3}}^{3}}+\frac{7}{{{x}_{4}}^{3}}+\frac{1}{{{x}_{5}}^{3}}\) 71,785 \({{x}_{1}}^{4}-{{x}_{2}}^{3}{x}_{3}\le 0\)

Where, 0.01 \(\le {x}_{1} , {x}_{2}, {x}_{3} {x}_{4}, {x}_{5} \le 100\)

Appendix 5: Carside crash design problem

$$\overrightarrow{{\varvec{a}}}=\left\{{a}_{1},\boldsymbol{ }{a}_{2},{a}_{3},\boldsymbol{ }{a}_{4},\boldsymbol{ }{a}_{5},\boldsymbol{ }{a}_{6},\boldsymbol{ }{a}_{7},{a}_{8},{a}_{9},\boldsymbol{ }{a}_{10},{a}_{11}\right\}$$

Objective function:

$$Min\, f\left(a\right)=1.98+4.90 {a}_{1}+6.67 {a}_{2}+6.98 {a}_{3}+4.01 {a}_{4}+1.78 {a}_{5}+2.73 {a}_{7},$$

Subject to:

$${h}_{1}\left(a\right)=1.16-0.3717 {a}_{2} {a}_{4}-0.00931 {a}_{2} {a}_{10}-0.484 {a}_{3} {a}_{9}+$$
$$0.01343 {a}_{6} {a}_{10 }\le 1,$$
$${h}_{2}\left(a\right)=0.261-0.0159 {a}_{1} {a}_{2}-0.188 {a}_{1} {a}_{8}-0.019 {a}_{2} {a}_{7} +0.0144 {a}_{3} {a}_{5} + 0.0008757 {a}_{5} {a}_{10}+0.080405 {a}_{6} {a}_{9}+0.00139 {a}_{8} {a}_{11} + 0.00001575 {a}_{10} {a}_{11}\le 0.32,$$
$${h}_{3}\left(a\right)=0.214+0.00817 {a}_{5}-0.131 {a}_{1}{a}_{8}-0.0704 {a}_{1}{a}_{9}+0.03099 {a}_{2}{ a}_{6}-0.018 {a}_{2}{ a}_{7}+0.0208 {a}_{3}{ a}_{8}+0.121 {a}_{3}{ a}_{9} -0.00364 {a}_{5}{ a}_{6}+ 0.0007715 {a}_{5}{ a}_{10}-0.0005354 {a}_{6}{ a}_{10} +0.00121 {a}_{8}{ a}_{11}\le 0.32,$$
$${h}_{4}\left(a\right)=0.074-0.061 {a}_{2}-0.163 {a}_{3} {a}_{8}+0.001232 {a}_{3} {a}_{10}-0.166 {a}_{7 }{a}_{9} +0.227{ a}_{2}^{2} \le 0.32,$$
$${h}_{5}\left(a\right)=28.98+3.818 {a}_{3}-4.2 {a}_{1} {a}_{2}+0.0207{ a}_{5} {a}_{10}+6.63 {a}_{6} {a}_{9}-$$
$$7.7 {a}_{7} {a}_{8}+0.32 {a}_{9} {a}_{10}\le 32,$$
$${h}_{6}\left(a\right)=33.86+2.95 {a}_{3}+0.1792 {a}_{10}-5.05 {a}_{1} {a}_{2}-11.0 {a}_{2} {a}_{8} - 0.0215 {a}_{5} {a}_{10}-9.98 {a}_{7} {a}_{8}+22.0 {a}_{8} {a}_{9}\le 32,$$
$${h}_{7}\left(a\right)=46.36-9.9 {a}_{2}-12.9 {a}_{1} {a}_{8}+0.1107 {a}_{3} {a}_{10}\le 32,$$
$${h}_{8}\left(a\right)=4.72-0.5 {a}_{4}-0.19 {a}_{2} {a}_{3}-0.0122 {a}_{4} {a}_{10}+0.009325 {a}_{6} {a}_{10} +$$
$$0.000191 {a}_{11}^{2} \le 4,$$
$${h}_{9}\left(a\right)=10.58-0.674 {a}_{1} {a}_{2}-1.95 {a}_{2} {a}_{8}+0.02054 {a}_{3} {a}_{10}-$$
$$0.0198 {a}_{4} {a}_{10}+0.028 a\left(6\right) a\left(10\right)\le 9.9,$$
$${h}_{10}\left(a\right)=16.45-0.489 {a}_{3} {a}_{7}-0.843 {a}_{5} {a}_{6}+0.0432 {a}_{9} {a}_{10}-0.0556 {a}_{9} {a}_{11} -0.000786 {a}_{11}^{2} \le 15.7,$$

where,

$$0.5\le {a}_{i}\le 1.5, i=1, 2, 3, 4, 5, 6, 7$$
$${a}_{8},{a}_{9}\in \left(0.192, 0.345\right),$$
$$-30\le {a}_{10}, {a}_{11}\le 30.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Saha, A.K., Nama, S. et al. An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif Intell Rev 56, 2811–2869 (2023). https://doi.org/10.1007/s10462-022-10218-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10218-0

Keywords

Navigation