Skip to main content
Log in

Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

In the study of image and vision computing, the generalization capability of an algorithm often determines whether it is able to work well in complex scenes. The goal of this review article is to survey the use of photorealistic image synthesis methods in addressing the problems of visual perception and understanding. Currently, the ACP Methodology comprising artificial systems, computational experiments, and parallel execution is playing an essential role in modeling and control of complex systems. This paper extends the ACP Methodology into the computer vision field, by proposing the concept and basic framework of Parallel Vision. In this paper, we first review previous works related to Parallel Vision, in terms of synthetic data generation and utilization. We detail the utility of synthetic data for feature analysis, object analysis, scene analysis, and other analyses. Then we propose the basic framework of Parallel Vision, which is composed of an ACP trilogy (artificial scenes, computational experiments, and parallel execution). We also present some in-depth thoughts and perspectives on Parallel Vision. This paper emphasizes the significance of synthetic data to vision system design and suggests a novel research methodology for perception and understanding of complex scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allain P, Courty N, Corpetti T (2012) AGORASET: a dataset for crowd video analysis. In: 2012 ICPR international workshop on pattern recognition and crowd analysis

  • Angel Arul Jothi J, Mary Anita Rajam V (2017) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48(1):31–81. doi:10.1007/s10462-016-9494-6

    Article  Google Scholar 

  • Aubry M, Russell BC (2015) Understanding deep features with computer-generated imagery. In: IEEE international conference on computer vision, pp 2875–2883. doi:10.1109/ICCV.2015.329

  • Bainbridge WS (2007) The scientific research potential of virtual worlds. Science 317(5837):472–476. doi:10.1126/science.1146930

    Article  Google Scholar 

  • Bertozzi M, Broggi A (1998) GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection. IEEE Trans Image Process 7(1):62–81. doi:10.1109/83.650851

    Article  Google Scholar 

  • Brutzer S, Höferlin B, Heidemann G (2011) Evaluation of background subtraction techniques for video surveillance. IEEE conference on computer vision and pattern recognition, pp 1937–1944. doi:10.1109/CVPR.2011.5995508

  • Butler DJ, Wulff J, Stanley GB, Black MJ (2012) A naturalistic open source movie for optical flow evaluation. In: 2012 European conference on computer vision, pp 611–625. doi:10.1007/978-3-642-33783-3_44

  • Caltech Pedestrian Detection Benchmark. http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/. Accessed 26 June 2017

  • Cappelli R (2015) Fingerprint sample synthesis. In: Li SZ, Jain AK (eds) Encyclopedia of biometrics, 2nd ed. Springer, New York, pp 668–679

  • Charalambous CC, Bharath AA (2016) A data augmentation methodology for training machine/deep learning gait recognition algorithms. In: 2016 British Machine Vision conference. doi:10.5244/C.30.110

  • Chen C, Seff A, Kornhauser A, Xiao J (2015) DeepDriving: learning affordance for direct perception in autonomous driving. In: 2015 IEEE international conference on computer vision, pp 2722–2730. doi:10.1109/ICCV.2015.312

  • Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D, Cohen-Or D, Chen B (2016) Synthesizing training images for boosting human 3D pose estimation. arXiv:1604.02703

  • Cheung E, Wong TK, Beral A, Wang X, Manocha D (2016) LCrowdV: generating labeled videos for simulation-based crowd behavior learning. arXiv:1606.08998

  • COCO—Common Objects in Context. http://mscoco.org/. Accessed 26 June 2017

  • Correa M, Ruiz-del-Solar J, Verschae R (2016) A realistic virtual environment for evaluating face analysis systems under dynamic conditions. Pattern Recognit 52:160–173. doi:10.1016/j.patcog.2015.11.008

    Article  Google Scholar 

  • Courty N, Allain P, Creusot C, Corpetti T (2014) Using the AGORASET dataset: assessing for the quality of crowd video analysis methods. Pattern Recognit Lett 44:161–170. doi:10.1016/j.patrec.2014.01.004

    Article  Google Scholar 

  • Creusot C, Courty N (2013) Ground truth for pedestrian analysis and application to camera calibration. In: IEEE conference on computer vision and pattern recognition workshops, pp 712–718. doi:10.1109/CVPRW.2013.108

  • Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE conference on computer vision and pattern recognition, pp 886–893. doi:10.1109/CVPR.2005.177

  • Danielsson O, Aghazadeh O (2014) Human pose estimation from RGB input using synthetic training data. arXiv:1405.1213

  • Datondji SRE, Dupuis Y, Subirats P, Vasseur P (2016) A survey of vision-based traffic monitoring of road intersections. IEEE Trans Intell Transp Syst 17(10):2681–2698. doi:10.1109/TITS.2016.2530146

    Article  Google Scholar 

  • Dosovitskiy A, Springenberg JT, Tatarchenko M, Brox T (2017) Learning to generate chairs, tables and cars with convolutional networks. IEEE Trans Pattern Anal Mach Intell 39(4):692–705. doi:10.1109/TPAMI.2016.2567384

    Google Scholar 

  • Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929. doi:10.1109/TPAMI.2012.231

    Article  Google Scholar 

  • Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645. doi:10.1109/TPAMI.2009.167

    Article  Google Scholar 

  • Fernández C, Baiget P, Roca FX, Gonzàlez J (2011) Augmenting video surveillance footage with virtual agents for incremental event evaluation. Pattern Recognit Lett 32:878–889. doi:10.1016/j.patrec.2010.09.027

    Article  Google Scholar 

  • Ferrer MA, Diaz-Cabrera M, Morales A (2015) Static signature synthesis: a neuromotor inspired approach for biometrics. IEEE Trans Pattern Anal Mach Intell 37(3):667–680. doi:10.1109/TPAMI.2014.2343981

    Article  Google Scholar 

  • Gaidon A, Wang Q, Cabon Y, Vig E (2016) Virtual worlds as proxy for multi-object tracking analysis. In: IEEE conference on computer vision and pattern recognition, pp 4340–4349. doi:10.1109/CVPR.2016.470

  • Galbally J, Plamondon R, Fierrez J, Ortega-Garcia J (2012a) Synthetic on-line signature generation. Part I: methodology and algorithms. Pattern Recognit 45:2610–2621. doi:10.1016/j.patcog.2011.12.011

    Article  Google Scholar 

  • Galbally J, Fierrez J, Ortega-Garcia J, Plamondon R (2012b) Synthetic on-line signature generation. Part II: experimental validation. Pattern Recognit 45:2622–2632. doi:10.1016/j.patcog.2011.12.007

    Article  Google Scholar 

  • Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(59):1–35

    MathSciNet  MATH  Google Scholar 

  • Ghifary M (2016) Domain adaptation and domain generalization with representation learning. Dissertation, Victoria University of Wellington, New Zealand

  • Gopalan R, Li R, Patel VM, Chellappa R (2015) Domain adaptation for visual recognition. Found Trends\({\textregistered }\) in Comput Graph Vis 8(4):285–378. doi:10.1561/0600000057

  • Gou C, Wang K, Yao Y, Li Z (2016) Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines. IEEE Trans Intell Transp Syst 17(4):1096–1107. doi:10.1109/TITS.2015.2496545

    Article  Google Scholar 

  • Gould S, Rodgers J, Cohen D, Elidan G, Koller D (2008) Multi-class segmentation with relative location prior. Int J Comput Vision 80(3):300–316. doi:10.1007/s11263-008-0140-x

    Article  Google Scholar 

  • Goyette N, Jodoin PM, Porikli F, Konrad J, Ishwar P (2014) A novel video dataset for change detection benchmarking. IEEE Trans Image Process 23(11):4663–4679. doi:10.1109/TIP.2014.2346013

    Article  MathSciNet  Google Scholar 

  • Gupta A, Vedaldi A, Zisserman A (2016) Synthetic data for text localisation in natural images. In: 2016 IEEE conference on computer vision and pattern recognition, pp 2315–2324. doi:10.1109/CVPR.2016.254

  • Halim Z, Kalsoom R, Bashir S, Abbas G (2016) Artificial intelligence techniques for driving safety and vehicle crash prediction. Artif Intell Rev 46(3):351–387. doi:10.1007/s10462-016-9467-9

    Article  Google Scholar 

  • Haltakov V, Unger C, Ilic S (2013) Framework for generation of synthetic ground truth data for driver assistance applications. In: 35th German conference on pattern recognition. doi:10.1007/978-3-642-40602-7_35

  • Handa A, Pătrăucean V, Badrinarayanan V, Stent S, Cipolla R (2015) SceneNet: understanding real world indoor scenes with synthetic data. arXiv:1511.07041

  • Handa A, Pătrăucean V, Badrinarayanan V, Stent S, Cipolla R (2016) Understanding real world indoor scenes with synthetic data. In: IEEE conference on computer vision and pattern recognition, pp 4077-4085. doi:10.1109/CVPR.2016.442

  • Hattori H, Boddeti VN, Kitani K, Kanade T (2015) Learning scene-specific pedestrian detectors without real data. In: IEEE conference on computer vision and pattern recognition, pp 3819–3827. doi:10.1109/CVPR.2015.7299006

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition, pp 770–778. doi:10.1109/CVPR.2016.90

  • ImageNet. http://www.image-net.org/. Accessed 26 June 2017

  • INRIA Person Dataset. http://pascal.inrialpes.fr/data/human/. Accessed 26 June 2017

  • Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2016) Reading text in the wild with convolutional neural networks. Int J Comput Vis 116:1–20. doi:10.1007/s11263-015-0823-z

    Article  MathSciNet  Google Scholar 

  • Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2014) Synthetic data and artificial neural networks for natural scene text recognition. arXiv:1406.2227

  • Johnson-Roberson M, Barto C, Mehta R, Sridhar SN, Vasudevan R (2016) Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? arXiv:1610.01983

  • Jones N (2014) Computer science: the learning machines. Nature 505(7482):146–148

    Article  Google Scholar 

  • Kaneva B, Torralba A, Freeman WT (2011) Evaluation of image features using a photorealistic virtual world. In: 2011 IEEE international conference on computer vision, pp 2282–2289. doi:10.1109/ICCV.2011.6126508

  • Karamouzas I, Overmars M (2012) Simulating and evaluating the local behavior of small pedestrian groups. IEEE Trans Vis Comput Gr 18(3):394–406. doi:10.1109/TVCG.2011.133

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, vol 25 (NIPS 2012). doi:10.1145/3065386

  • LeCun Y, Bengio Y, Hinton GE (2015) Deep learning. Nature 521(7553):436–444. doi:10.1038/nature14539

    Article  Google Scholar 

  • Liu Y, Wang K, Shen D (2016) Visual tracking based on dynamic coupled conditional random field model. IEEE Trans Intell Transp Syst 17(3):822–833. doi:10.1109/TITS.2015.2488287

    Article  Google Scholar 

  • Loshchilov I, Hutter F (2016) Online batch selection for faster training of neural networks. arXiv:1511.06343

  • Lowry S, Sünderhauf N, Newman P, Leonard JJ, Cox D, Corke P, Milford MJ (2016) Visual place recognition: a survey. IEEE Trans Rob 32(1):1–19. doi:10.1109/TRO.2015.2496823

    Article  Google Scholar 

  • Luo J, Tang J, Tjahjadi T, Xiao X (2016) Robust arbitrary view gait recognition based on parametric 3D human body reconstruction and virtual posture synthesis. Pattern Recognit 60:361–377. doi:10.1016/j.patcog.2016.05.030

    Article  Google Scholar 

  • Mahendran A, Bilen H, Henriques JF, Vedaldi A (2016) ResearchDoom and CocoDoom: learning computer vision with games. arXiv:1610.02431

  • Marín J, Vázquez D, Gerónimo D, López AM (2010) Learning appearance in virtual scenarios for pedestrian detection. In: 2010 IEEE conference on computer vision and pattern recognition, pp 137–144. doi:10.1109/CVPR.2010.5540218

  • Mayer N, Ilg E, Häusser P, Fischer P, Cremers D, Dosovitskiy A, Brox T (2016) A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE conference on computer vision and pattern recognition, pp 4040–4048. doi:10.1109/CVPR.2016.438

  • Model I, Shamir L (2015) Comparison of data set bias in object recognition benchmarks. IEEE Access 3:1953–1962. doi:10.1109/ACCESS.2015.2491921

    Article  Google Scholar 

  • Movshovitz-Attias Y, Kanade T, Sheikh Y (2016) How useful is photo-realistic rendering for visual learning? arXiv:1603.08152

  • Neves J, Narducci F, Barra S, Proença H (2016) Biometric recognition in surveillance scenarios: a survey. Artif Intell Rev 46(4):515–541. doi:10.1007/s10462-016-9474-x

    Article  Google Scholar 

  • Peng X, Sun B, Ali K, Saenko K (2015) Learning deep object detectors from 3D models. In: 2015 IEEE international conference on computer vision, pp 1278–1286. doi:10.1109/ICCV.2015.151

  • Pepik B, Benenson R, Ritschel T, Schiele B (2015) What is holding back convnets for detection? arXiv:1508.02844

  • Pinto N, Barhomi Y, Cox DD, DiCarlo JJ (2011) Comparing state-of-the-art visual features on invariant object recognition tasks. In: IEEE workshop on applications of computer vision, pp 463–470. doi:10.1109/WACV.2011.5711540

  • Prendinger H, Gajananan K, Zaki AB, Fares A, Molenaar R, Urbano D, van Lint H, Gomaa W (2013) Tokyo Virtual Living Lab: designing smart cities based on the 3D Internet. IEEE Internet Comput 17(6):30–38. doi:10.1109/MIC.2013.87

    Article  Google Scholar 

  • Qiu W, Yuille A (2016) UnrealCV: connecting computer vision to Unreal Engine. In: 2016 ECCV workshop on virtual/augmented reality for visual artificial intelligence, pp 909-916. doi:10.1007/978-3-319-49409-8_75

  • Qureshi F, Terzopoulos D (2008) Smart camera networks in virtual reality. Proc IEEE 96(10):1640–1656. doi:10.1109/JPROC.2008.928932

    Article  Google Scholar 

  • Ragheb H, Velastin S, Remagnino P, Ellis T (2008) ViHASi: virtual human action silhouette data for the performance evaluation of silhouette-based action recognition methods. In: ACM/IEEE international conference on distributed smart cameras, pp 1–10. doi:10.1109/ICDSC.2008.4635730

  • Ramezani M, Yaghmaee F (2016) A review on human action analysis in videos for retrieval applications. Artif Intell Rev 46(4):485–514. doi:10.1007/s10462-016-9473-y

    Article  Google Scholar 

  • Rematas K, Ritschel T, Fritz M, Tuytelaars T (2014) Image-based synthesis and re-synthesis of viewpoints guided by 3D models. In: 2014 IEEE conference on computer vision and pattern recognition, pp 3898–3905. doi:10.1109/CVPR.2014.498

  • Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149. doi:10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  • Ren X, Chen K, Sun J (2016) A CNN based scene Chinese text recognition algorithm with synthetic data engine. arXiv:1604.01891

  • Richter SR, Vineet V, Roth S, Koltun V (2016) Playing for data: ground truth from computer games. In: 2016 European conference on computer vision, pp 102–118. doi:10.1007/978-3-319-46475-6_7

  • Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM (2016) The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: 2016 IEEE conference on computer vision and pattern recognition, pp 3234–3243. doi:10.1109/CVPR.2016.352

  • Rozantsev A, Lepetit V, Fua P (2015) On rendering synthetic images for training an object detector. Comput Vis Image Underst 137:24–37. doi:10.1016/j.cviu.2014.12.006

    Article  Google Scholar 

  • Shafaei A, Little JJ, Schmidt M (2016) Play and learn: using video games to train computer vision models. In: 2016 The British machine vision conference. doi:10.5244/C.30.26

  • Shotton J, Girshick R, Fitzgibbon A, Sharp T, Cook M, Finocchio M, Moore R, Kohli P, Criminisi A, Kipman A, Blake A (2013) Efficient human pose estimation from single depth images. IEEE Trans Pattern Anal Mach Intell 35(12):2821–2840. doi:10.1109/TPAMI.2012.241

    Article  Google Scholar 

  • Shrivastava A, Gupta A, Girshick R (2016) Training region-based object detectors with online hard example mining. arXiv:1604.03540

  • Sizikova E, Singh VK, Georgescu B, Halber M, Ma K, Chen T (2016) Enhancing place recognition using joint intensity—depth analysis and synthetic data. In: ECCV workshop on virtual/augmented reality for visual artificial intelligence, pp 901–908. doi:10.1007/978-3-319-49409-8_74

  • Smelik RM, Tutenel T, Bidarra R, Benes B (2014) A survey on procedural modeling for virtual worlds. Comput Graphics Forum 33(6):31–50. doi:10.1111/cgf.12276

    Article  Google Scholar 

  • Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21. doi:10.1016/j.cviu.2013.12.005

    Article  Google Scholar 

  • Starzyk W, Qureshi F (2013) Software laboratory for camera networks research. IEEE J Emerg Select Top Circuits Syst 3(2):284–293. doi:10.1109/JETCAS.2013.2256827

    Article  Google Scholar 

  • Sun B, Peng X, Saenko K (2015) Generating large scale image datasets from 3D CAD models. In: CVPR 2015 Workshop on the future of datasets in vision

  • Sun B, Saenko K (2014) From virtual to reality: fast adaptation of virtual object detectors to real domains. In: 2014 British machine vision conference. doi:10.5244/C.28.82

  • Su H, Qi CR, Li Y, Guibas L (2015) Render for CNN: viewpoint estimation in images using CNNs trained with rendered 3D model views. In: IEEE international conference on computer vision, pp 2686–2694. doi:10.1109/ICCV.2015.308

  • Szeliski R (2010) Computer vision: algorithms and applications. Springer, New York

    MATH  Google Scholar 

  • Taylor GR, Chosak AJ, Brewer PC (2007) OVVV: using virtual worlds to design and evaluate surveillance systems. In: 2007 IEEE conference on computer vision and pattern recognition, pp 1–8. doi:10.1109/CVPR.2007.383518

  • Thacker NA, Clark AF, Barron JL, Beveridge JR, Courtney P, Crum WR, Ramesh V, Clark C (2008) Performance characterization in computer vision: a guide to best practices. Comput Vis Image Underst 109(3):305–334. doi:10.1016/j.cviu.2007.04.006

    Article  Google Scholar 

  • The KITTI Vision Benchmark Suite. http://www.cvlibs.net/datasets/kitti/. Accessed 26 June 2017

  • The PASCAL Visual Object Classes homepage. http://host.robots.ox.ac.uk/pascal/VOC/. Accessed 26 June 2017

  • Torralba A, Efros AA (2011) Unbiased look at dataset bias. In: 2011 IEEE conference on computer vision and pattern recognition, pp 1521–1528. doi:10.1109/CVPR.2011.5995347

  • Vacavant A, Chateau T, Wilhelm A, Lequièvre L (2013) A benchmark dataset for outdoor foreground background extraction. In: ACCV 2012 workshops, Lecture Notes in Computer Science vol 7728, pp 291–300. doi:10.1007/978-3-642-37410-4_25

  • Vázquez D (2013) Domain adaptation of virtual and real worlds for pedestrian detection. Dissertation, Universitat de Barcelona, Spain

  • Vázquez D, López AM, Marín J, Ponsa D, Gerónimo D (2014) Virtual and real world adaptation for pedestrian detection. IEEE Trans Pattern Anal Mach Intell 36(4):797–809. doi:10.1109/TPAMI.2013.163

    Article  Google Scholar 

  • Veeravasarapu VSR, Hota RN, Rothkopf C, Visvanathan R (2015a) Model validation for vision systems via graphics simulation. arXiv:1512.01401

  • Veeravasarapu VSR, Hota RN, Rothkopf C, Visvanathan R (2015b) Simulations for validation of vision systems. arXiv:1512.01030

  • Veeravasarapu VSR, Rothkopf C, Visvanathan R (2016) Model-driven simulations for deep convolutional neural networks. arXiv:1605.09582

  • Venetianer PL, Deng H (2010) Performance evaluation of an intelligent video surveillance system - a case study. Comput Vis Image Underst 114(11):1292–1302. doi:10.1016/j.cviu.2010.07.010

    Article  Google Scholar 

  • Wang F-Y (2004) Parallel system methods for management and control of complex systems. Control Decis 19(5):485–489

    MATH  Google Scholar 

  • Wang F-Y (2010) Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst 11(3):630–638. doi:10.1109/TITS.2010.2060218

    Article  Google Scholar 

  • Wang F-Y (2013) Parallel control: a method for data-driven and computational control. Acta Automatica Sinica 39(4):293–302. doi:10.3724/SP.J.1004.2013.00293

    Article  Google Scholar 

  • Wang K, Huang W, Tian B, Wen D (2012) Measuring driving behaviors from live video. IEEE Intell Syst 27(5):75–80. doi:10.1109/MIS.2012.100

    Article  Google Scholar 

  • Wang X, Wang M, Li W (2014) Scene-specific pedestrian detection for static video surveillance. IEEE Trans Pattern Anal Mach Intell 36(2):361–374. doi:10.1109/TPAMI.2013.124

    Article  Google Scholar 

  • Wang F-Y, Wang X, Li L, Li L (2016) Steps toward parallel intelligence. IEEE/CAA J Automatica Sinica 3(4):345–348. doi:10.1109/JAS.2016.7510067

    Article  MathSciNet  Google Scholar 

  • Wang K, Liu Y, Gou C, Wang F-Y (2016) A multi-view learning approach to foreground detection for traffic surveillance applications. IEEE Trans Veh Technol 65(6):4144–4158. doi:10.1109/TVT.2015.2509465

    Article  Google Scholar 

  • Wang F-Y, Zhang JJ, Zheng X, Wang X, Yuan Y, Dai X, Zhang J, Yang L (2016) Where does AlphaGo go: from Church-Turing Thesis to AlphaGo Thesis and beyond. IEEE/CAA J Automatica Sinica 3(2):113–120. doi:10.1109/JAS.2016.7471613

    Article  Google Scholar 

  • Wang F-Y, Zhang J, Wei Q, Zheng X, Li L (2017) PDP: parallel dynamic programming. IEEE/CAA J Automatica Sinica 4(1):1–5. doi:10.1109/JAS.2017.7510310

    Article  MathSciNet  Google Scholar 

  • Wang K, Yao Y (2015) Video-based vehicle detection approach with data-driven adaptive neuro-fuzzy networks. Int J Pattern Recognit Artif Intell. doi:10.1142/S0218001415550150

  • Wulff J, Butler DJ, Stanley GB, Black MJ (2012) Lessons and insights from creating a synthetic optical flow benchmark. In: 2012 ECCV workshop on unsolved problems in optical flow and stereo estimation, pp 168–177. doi:10.1007/978-3-642-33868-7_17

  • Xu J, Vázquez D, López AM, Marín J, Ponsa D (2014) Learning a part-based pedestrian detector in a virtual world. IEEE Trans Intell Transp Syst 15(5):2121–2131. doi:10.1109/TITS.2014.2310138

    Article  Google Scholar 

  • Xu J, Ramos S, Vázquez D, López AM (2014) Domain adaptation of deformable part-based models. IEEE Trans Pattern Anal Mach Intell 36(12):2367–2380. doi:10.1109/TPAMI.2014.2327973

    Article  Google Scholar 

  • Yang L, Wang F-Y (2007) Driving into intelligent spaces with pervasive communications. IEEE Intell Syst 22(1):12–15. doi:10.1109/MIS.2007.8

    Article  Google Scholar 

  • Zeng X, Ouyang W, Wang M, Wang X (2014) Deep learning of scene-specific classifier for pedestrian detection. In: 2014 European conference on computer vision, pp 472-487. doi:10.1007/978-3-319-10578-9_31

  • Zhang N, Wang F-Y, Zhu F, Zhao D, Tang S (2008) DynaCAS: computational experiments and decision support for ITS. IEEE Intell Syst 23(6):19–23. doi:10.1109/MIS.2008.101

    Article  Google Scholar 

  • Zhu W, Wang F-Y (2012) The fourth type of covering-based rough sets. Inf Sci 201:80–92. doi:10.1016/j.ins.2012.01.026

    Article  MathSciNet  MATH  Google Scholar 

  • Zitnick CL, Vedantam R, Parikh D (2016) Adopting abstract images for semantic scene understanding. IEEE Trans Pattern Anal Mach Intell 38(4):627–638. doi:10.1109/TPAMI.2014.2366143

    Article  Google Scholar 

  • Zuo J, Schmid NA, Chen X (2007) On generation and analysis of synthetic iris images. IEEE Trans Inf Forensics Secur 2(1):77–90. doi:10.1109/TIFS.2006.890305

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61533019 and No. 71232006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei-Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Gou, C., Zheng, N. et al. Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives. Artif Intell Rev 48, 299–329 (2017). https://doi.org/10.1007/s10462-017-9569-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9569-z

Keywords

Navigation