Skip to main content

Advertisement

Log in

Dictionary learning feature space via sparse representation classification for facial expression recognition

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Facial expression recognition (FER) plays a significant role in human-computer interaction. In this paper, adopting a dictionary learning feature space (DLFS) via sparse representation classification (SRC), we propose a method for FER. First, we obtain a difference dictionary (DD) from the feature space by indirectly using an auxiliary neutral training set. Next, we use a dictionary learning algorithm to train the DD; this algorithm considers the samples from the DD are approximately symmetrical structure. Finally, we use SRC to represent and determine the label of each query sample. We then verify out proposed method from the perspective of training samples, dimension reduction methods and Gaussian noise variances using a variety of public databases. In addition, we compare our DLFS_SRC approach with DLFS_CRC and DLFS_LRC approaches on the Extended Cohn-Kanade (CK+) database to analyze recognition results. Our simulation experiments show that our proposed method achieved satisfying performance levels for FER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Blockmans B, Tamarozzi T, Naets F, Desmet W (2015) A nonlinear parametric model reduction method for efficient fear contact simulations. Int J Numer Methods Eng 102(5):1162–1191

    Article  MATH  Google Scholar 

  • Deng W, Hu J, Guo J (2012) Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans Pattern Anal Mach Intell 34:1864–1870

    Article  Google Scholar 

  • Fang Y, Chang L (2015) Multi-instance feature learning based on sparse representation for facial expression recognition. Lect Notes Comput Sci 8935:224–233

    Article  Google Scholar 

  • Goeleven E, De Raedt R, Leyman L, Verschuere B (2008) The Karolinska directed emotional faces: a validation study. Cognit Emot 22(6):1094–1118

    Article  Google Scholar 

  • Happy SL, Routray A (2015) Automatic facial expression recognition using features of salient facial patches. IEEE Trans Affect Comput 6(1):1–12

    Article  Google Scholar 

  • Hegde G, Seetha M, Hegde N (2015) Facial expression recognition using entire Gabor filter matching score level fusion approach based on subspace methods. Lect Notes Comput Sci 9468:47–57

    Article  Google Scholar 

  • Hoyer PO (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learin Res 5(11):1457–1469

    MathSciNet  MATH  Google Scholar 

  • Huang MW, Wang ZW, Ying ZL (2010) A new method for facial expression recognition based on sparse representation plus LBP. Int Congr Image Signal Process 3:6826–6829

    Google Scholar 

  • Kapoor R, Gupta R (2015) Morphological mapping for non-linear dimensionality reduction. IET Comput Vis 9(2):226–232

    Article  Google Scholar 

  • Kim SJ, Koh K, Lustig M, Boyed S, Gorinevsky D (2007) A method for large scale l1-regularized least squares. IEEE J Sel Top Signal Process 1(4):606–617

    Article  Google Scholar 

  • Lee SH, Baddar WJ, Ro YM (2016) Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos. Pattern Recognit 54:52–67

    Article  Google Scholar 

  • Le T, Sawides M (2015) A novel shape constrained feature-based active contour model for lips or mouth segmentation in the wild. Pattern Recognit 54:23–33

    Article  Google Scholar 

  • Li X, Ruan Q, Yi J, An G, Zhao R (2015) Fully automatic 3D facial expression recognition using polytypic multi-block local binary patterns. Signal Process 108:297–308

    Article  Google Scholar 

  • Little AC (2014) Domain specificity in human symmetry preferences: symmetry is most pleasant when looking at human faces. Symmetry 6(2):222–233

    Article  Google Scholar 

  • Liu W, Lu L, Li H, Wang W, Zou Y (2015) A novel kernel collaborative representation approach for image classification. IEEE Int Conf Image Process 1:4241–4245

    Google Scholar 

  • Lucey P, Jeffrey FC, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: IEEE computer society conference on computer vision and pattern recognition workshops, CVPRW. pp 94–101

  • Luo Y, Zhang T, Zhang Y (2016) A novel fusion method of PCA and LDP for facial expression feature extraction. Optik 127(2):718–721

    Article  Google Scholar 

  • Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with Gabor wavelets. In: IEEE international conference on automatic face and gesture recognition. pp 200–205

  • Ma D, Li M, Nian F, Kong C (2015) Facial expression recognition based on characteristics of block LGBP and sparse representation. J Comput Methods Sci Eng 15(3):537–547

    Google Scholar 

  • Martinez AM, Benavente R (1998) The AR face database. CVC technical report #24, June 1998

  • Min X, Wang H, Yang Z, Ge S, Zhang J, Shao N (2015) Relevant component locally embedding dimensionality reduction for gene expression data analysis. Metall Min Ind 7(4):186–194

    Google Scholar 

  • Shao J, Gori l, Wan S, Aggarwal JK (2015) 3D dynamic facial expression recognition using low-resolution videos. Pattern Recognit Lett 65:157–162

    Article  Google Scholar 

  • Shikkenawis G, Mitra SK (2016) On some variants of locality preserving projection. Neurocomputing 173:196–211

    Article  MATH  Google Scholar 

  • Siddiqi MH, Ali R, Khan AM, Park YT, Lee S (2015) Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields. IEEE Trans Image Process 24(4):1386–1398

    Article  MathSciNet  MATH  Google Scholar 

  • Tariq U, Thomas J, Huang TS (2014) Supervised super-vector encoding for facial expression recognition. Pattern Recognit Lett 46(9):89–95

    Article  Google Scholar 

  • Tian Y (2004) Evaluation of face resolution for expression analysis. IEEE Comput Soc Conf Comput Vis Pattern Workshops 1:82–82

    Google Scholar 

  • Wang S, Yan W, Zhao G, Fu X, Zhou C (2015) Micro-expression recognition using robust principle component analysis and local spatiotemporal directional features. Lect Notes Comput Sci 8925:325–338

    Article  Google Scholar 

  • Wang Z, Ruan Q, An G (2016) Facial expression recognition using sparse local Fisher discriminant analysis. Neurocomputing 174:756–766

    Article  Google Scholar 

  • Wang Z, Ying Z (2012) Facial expression recognition based on local phase quantization and sparse representation. In: International conference on computation. pp 222–225

  • Wang Q, Ying Z (2014) Facial expression recognition algorithm based on Gabor texture features and Adaboost selection via sparse representation. Appl Mech Mater 4:433–436

    Google Scholar 

  • Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  • Xu X, Quan C, Ren F (2015) Facial expression recognition based on Gabor Wavelet transform and histogram of oriented gradients. IEEE Int Conf Mechatron Autom 9:2117–2122

    Google Scholar 

  • Yazdani R, Fallah HR, Hajimahmoodzadeh M (2014) Reconstruction of two interfering wavefronts using Zernike polynomials and stochastic parallel gradient descent algorithm. Opt Lett 39(6):1505–1508

    Article  Google Scholar 

  • Yu J, Ko K, Sim K (2016) Facial point classifier using convolution neural network and cascade facial point detector. J Inst Control Robot Syst 22(3):241–246

    Article  Google Scholar 

  • Yurtkan K, Demirel H (2014) Feature selection for improved 3D facial expression recognition. Pattern Recognit Lett 38(3):26–33

    Article  Google Scholar 

  • Yusuf R, Sharma DG, Tanev I, Shimohara K (2016) Evolving an emotion recognition module for an intelligent agent using genetic programming and a genetic algorithm. Artif Life Robot 21(1):85–90

    Article  Google Scholar 

  • Zhang S, Zhao X, Lei B (2012) Facial expression recognition using sparse representation. WSEAS Trans Syst 11(8):440–452

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 61071199) and the Natural Science Foundation of Hebei Province (No. F2016203422). In this paper, we also utilized four public databases. We therefore thank the providers of these databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-ping Hu.

Ethics declarations

Conflict of interests

We declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Hu, Zp., Wang, M. et al. Dictionary learning feature space via sparse representation classification for facial expression recognition. Artif Intell Rev 51, 1–18 (2019). https://doi.org/10.1007/s10462-017-9554-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-017-9554-6

Keywords

Navigation