Skip to main content

Advertisement

Log in

Knowing How and Knowing Why: testing the effect of instruction designed for cognitive integration on procedural skills transfer

  • Published:
Advances in Health Sciences Education Aims and scope Submit manuscript

Abstract

Transfer is a desired outcome of simulation-based training, yet evidence for how instructional design features promote transfer is lacking. In clinical reasoning, transfer is improved when trainees experience instruction integrating basic science explanations with clinical signs and symptoms. To test whether integrated instruction has similar effects in procedural skills (i.e., psychomotor skills) training, we studied the impact of instruction that integrates conceptual (why) and procedural (how) knowledge on the retention and transfer of simulation-based lumbar puncture (LP) skill. Medical students (N = 30) were randomized into two groups that accessed different instructional videos during a 60-min self-regulated training session. An unintegrated video provided procedural How instruction via step-by-step demonstrations of LP, and an integrated video provided the same How instruction with integrated conceptual Why explanations (e.g., anatomy) for key steps. Two blinded raters scored post-test, retention, and transfer performances using a global rating scale. Participants also completed written procedural and conceptual knowledge tests. We used simple mediation regression analyses to assess the total and indirect effects (mediated by conceptual knowledge) of integrated instruction on retention and transfer. Integrated instruction was associated with improved conceptual (p < .001) but not procedural knowledge test scores (p = .11). We found no total effect of group (p > .05). We did find a positive indirect group effect on skill retention (B ab  = .93, p < .05) and transfer (B ab  = .59, p < .05), mediated through participants improved conceptual knowledge. Integrated instruction may improve trainees’ skill retention and transfer through gains in conceptual knowledge. Such integrated instruction may be an instructional design feature for simulation-based training aimed at improving transfer outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Board of Internal Medicine. (2016). Internal medicine policies. http://www.abim.org/certification/policies/internal-medicine-subspecialty-policies/internal-medicine.aspx

  • Baghdady, M. T., Carnahan, H., Lam, E. W., & Woods, N. N. (2013). Integration of basic sciences and clinical sciences in oral radiology education for dental students. Journal of Dental Education, 77(6), 757–763.

    Google Scholar 

  • Baghdady, M. T., Carnahan, H., Lam, E. W. N., & Woods, N. N. (2014a). Dental and dental hygiene students’ diagnostic accuracy in oral radiology: Effect of diagnostic strategy and instructional method. Journal of Dental Education, 78(9), 1279–1285.

    Google Scholar 

  • Baghdady, M. T., Carnahan, H., Lam, E. W. N., & Woods, N. N. (2014b). Test-enhanced learning and its effect on comprehension and diagnostic accuracy. Medical Education, 48(2), 181–188. doi:10.1111/medu.12302.

    Article  Google Scholar 

  • Baghdady, M. T., Pharoah, M. J., Regehr, G., Lam, E. W. N., & Woods, N. N. (2009). The role of basic sciences in diagnostic oral radiology. Journal of Dental Education, 73(10), 1187–1193.

    Google Scholar 

  • Baroody, A. J. (2003). The development of adaptive expertise and flexibility: The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: constructing adaptive expertise (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum Associates. http://site.ebrary.com/id/10084525. Accessed 29 July, 2015.

  • Baroody, A. J., Feil, Y., & Johnson, A. R. (2007). An alternative reconceptualization of procedural and conceptual knowledge. Journal for Research in Mathematics Education, 38(2), 115–131. doi:10.2307/30034952.

    Google Scholar 

  • Boet, S., Bould, M. D., Fung, L., Qosa, H., Perrier, L., Tavares, W., et al. (2014). Transfer of learning and patient outcome in simulated crisis resource management: A systematic review. Canadian Journal of Anesthesia/Journal canadien d’anesthésie, 61(6), 571–582. doi:10.1007/s12630-014-0143-8.

    Article  Google Scholar 

  • Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications. Review of research in education, 24, 61–100.

    Google Scholar 

  • Broudy, H. S. (1977). Types of knowledge and purposes in education. In R. C. Anderson, R. J. Spiro, & W. E. Montague (Eds.), Schooling and the acquisition of knowledge (pp. 1–17). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brydges, R., Nair, P., Ma, I., Shanks, D., & Hatala, R. (2012). Directed self-regulated learning versus instructor-regulated learning in simulation training. Medical Education, 46(7), 648–656. doi:10.1111/j.1365-2923.2012.04268.x.

    Article  Google Scholar 

  • Chamberland, M., Mamede, S., St-Onge, C., Rivard, M.-A., Setrakian, J., Lévesque, A., et al. (2013). Students’ self-explanations while solving unfamiliar cases: the role of biomedical knowledge. Medical Education, 47(11), 1109–1116. doi:10.1111/medu.12253.

    Article  Google Scholar 

  • Cheung, J. J. H., Koh, J., Brett, C., Bägli, D. J., Kapralos, B., & Dubrowski, A. (2016). Preparation with web-based observational practice improves efficiency of simulation-based mastery learning. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 11(5), 316–322. doi:10.1097/SIH.0000000000000171.

    Article  Google Scholar 

  • Chi, M. T. H., & VanLehn, K. A. (2012). Seeing deep structure from the interactions of surface features. Educational Psychologist, 47(3), 177–188. doi:10.1080/00461520.2012.695709.

    Article  Google Scholar 

  • Cook, D. A., Brydges, R., Hamstra, S. J., Zendejas, B., Szostek, J. H., Wang, A. T., et al. (2012). Comparative effectiveness of technology-enhanced simulation versus other instructional methods: A systematic review and meta-analysis. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 7(5), 308–320. doi:10.1097/SIH.0b013e3182614f95.

    Article  Google Scholar 

  • Cook, D. A., Hamstra, S. J., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., et al. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 35(1), e867–e898. doi:10.3109/0142159X.2012.714886.

    Article  Google Scholar 

  • Cook, D. A., Hatala, R., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., et al. (2011). Technology-enhanced simulation for health professions education a systematic review and meta-analysis. JAMA, the Journal of the American Medical Association, 306(9), 978–988. doi:10.1001/jama.2011.1234.

    Article  Google Scholar 

  • de Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and qualities of knowledge. Educational Psychologist, 31(2), 105–113.

    Article  Google Scholar 

  • DeCaro, M. S., & Rittle-Johnson, B. (2012). Exploring mathematics problems prepares children to learn from instruction. Journal of Experimental Child Psychology, 113(4), 552–568. doi:10.1016/j.jecp.2012.06.009.

    Article  Google Scholar 

  • Domuracki, K., Wong, A., Olivieri, L., & Grierson, L. E. M. (2015). The impacts of observing flawed and flawless demonstrations on clinical skill learning. Medical Education, 49(2), 186–192. doi:10.1111/medu.12631.

    Article  Google Scholar 

  • Dubrowski, A. (2005). Performance vs. learning curves: What is motor learning and how is it measured? Surgical Endoscopy, 19(9), 1290.

    Article  Google Scholar 

  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. doi:10.3200/JMBR.36.2.212-224.

    Article  Google Scholar 

  • Haji, F. A., Cheung, J. J. H., Woods, N., Regehr, G., de Ribaupierre, S., & Dubrowski, A. (2016). Thrive or overload? The effect of task complexity on novices’ simulation-based learning. Medical Education, 50(9), 955–968. doi:10.1111/medu.13086.

    Article  Google Scholar 

  • Hamstra, S. J., Brydges, R., Hatala, R., Zendejas, B., & Cook, D. A. (2014). Reconsidering fidelity in simulation-based training: Academic medicine, 89(3), 387–392. doi:10.1097/ACM.0000000000000130.

    Google Scholar 

  • Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York: The Guilford Press.

    Google Scholar 

  • Ilgen, J. S., Ma, I. W. Y., Hatala, R., & Cook, D. A. (2015). A systematic review of validity evidence for checklists versus global rating scales in simulation-based assessment. Medical Education, 49(2), 161–173. doi:10.1111/medu.12621.

    Article  Google Scholar 

  • Issenberg, S. B., Mcgaghie, W. C., Petrusa, E. R., Lee Gordon, D., & Scalese, R. J. (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: A BEME systematic review. Medical Teacher, 27(1), 10–28. doi:10.1080/01421590500046924.

    Article  Google Scholar 

  • Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022. doi:10.1111/cogs.12107.

    Article  Google Scholar 

  • Kulasegaram, K. M., Manzone, J. C., Ku, C., Skye, A., Wadey, V., & Woods, N. N. (2015). Cause and effect: Testing a mechanism and method for the cognitive integration of basic science. Academic Medicine, 90, S63–S69. doi:10.1097/ACM.0000000000000896.

    Article  Google Scholar 

  • Kulasegaram, K. M., Martimianakis, M. A., Mylopoulos, M., Whitehead, C. R., & Woods, N. N. (2013). Cognition before curriculum: Rethinking the integration of basic science and clinical learning. Academic Medicine, 88(10), 1578–1585. doi:10.1097/ACM.0b013e3182a45def.

    Article  Google Scholar 

  • Lammers, R. L., Temple, K. J., Wagner, M. J., & Ray, D. (2005). Competence of new emergency medicine residents in the performance of lumbar punctures. Academic Emergency Medicine, 12(7), 622–628. doi:10.1197/j.aem.2005.01.014.

    Article  Google Scholar 

  • Larsen, D. P., Butler, A. C., & Roediger, H. L., III. (2008). Test-enhanced learning in medical education. Medical Education, 42(10), 959–966. doi:10.1111/j.1365-2923.2008.03124.x.

    Article  Google Scholar 

  • Lee, T. D., Swinnen, S. P., & Serrien, D. J. (1994). Cognitive effort and motor learning. Quest, 46(3), 328–344.

    Article  Google Scholar 

  • Lee, T. D., White, M. A., & Carnahan, H. (1990). On the role of knowledge of results in motor learning: Exploring the guidance hypothesis. Journal of Motor Behavior, 22(2), 191–208.

    Article  Google Scholar 

  • Leppink, J. (2015). On causality and mechanisms in medical education research: An example of path analysis. Perspectives on Medical Education, 4(2), 66–72. doi:10.1007/s40037-015-0174-z.

    Article  Google Scholar 

  • Martin, J. A., Regehr, G., Reznick, R., MacRae, H., Murnaghan, J., Hutchison, C., et al. (1997). Objective structured assessment of technical skill (OSATS) for surgical residents. The British Journal of Surgery, 84(2), 273–278.

    Article  Google Scholar 

  • McCullagh, P., & Caird, J. K. (1990). Correct and learning-models and the use of model knowledge of results in the acquisition and retention of a motor skill. Journal of Human Movement Studies, 18(3), 107–116.

    Google Scholar 

  • McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., & Scalese, R. J. (2010). A critical review of simulation-based medical education research: 2003–2009: Simulation-based medical education research 2003–2009. Medical Education, 44(1), 50–63. doi:10.1111/j.1365-2923.2009.03547.x.

    Article  Google Scholar 

  • Mylopoulos, M., Brydges, R., Woods, N. N., Manzone, J., & Schwartz, D. L. (2016). Preparation for future learning: A missing competency in health professions education? Medical Education, 50(1), 115–123. doi:10.1111/medu.12893.

    Article  Google Scholar 

  • Mylopoulos, M., & Woods, N. (2014). Preparing medical students for future learning using basic science instruction. Medical Education, 48(7), 667–673. doi:10.1111/medu.12426.

    Article  Google Scholar 

  • Needham, D. R., & Begg, I. M. (1991). Problem-oriented training promotes spontaneous analogical transfer: Memory-oriented training promotes memory for training. Memory & Cognition, 19(6), 543–557.

    Article  Google Scholar 

  • Norman, G., Monteiro, S., & Salama, S. (2012). Sample size calculations: should the emperor’s clothes be off the peg or made to measure? BMJ, 345, e5278. doi:10.1136/bmj.e5278.

    Article  Google Scholar 

  • Rittle-Johnson, B., & Schneider, M. (2015). Developing conceptual and procedural knowledge of mathematics. In R. C. Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 1118–1134). Oxford: Oxford University Press. http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199642342.001.0001/oxfordhb-9780199642342-e-014.

  • Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27(4), 587–597. doi:10.1007/s10648-015-9302-x.

    Article  Google Scholar 

  • Rittle-Johnson, B., Star, J. R., & Durkin, K. (2012). Developing procedural flexibility: Are novices prepared to learn from comparing procedures? Developing procedural flexibility. British Journal of Educational Psychology, 82(3), 436–455. doi:10.1111/j.2044-8279.2011.02037.x.

    Article  Google Scholar 

  • Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations: Mediation analysis in social psychology. Social and Personality Psychology Compass, 5(6), 359–371. doi:10.1111/j.1751-9004.2011.00355.x.

    Article  Google Scholar 

  • Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225.

    Article  Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three. http://www2.psychology.uiowa.edu/Classes/31330/MotorControl/SchmidtBjork1992.pdf. Accessed 24 March 2014.

  • Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (4th ed.). Champaign, IL: Human Kinetics.

  • Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and Instruction, 16(4), 475–5223. doi:10.1207/s1532690xci1604_4.

    Article  Google Scholar 

  • Shea, J. B., & Morgan, R. L. (1979). Contextual interference effects on the acquisition, retention, and transfer of a motor skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179.

    Google Scholar 

  • Shea, J. B., & Zimny, S. T. (1983). Context effects in memory and learning movement information. Memory and control of action (pp. 345–366). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Shea, J. B., & Zimny, S. T. (1988). Knowledge incorporation in motor representation. In O. G. Meijer & K. Roth (Eds.), Complex movement behaviour: “The” motor-action controversy (pp. 289–314). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Starkes, J. L., & Allard, F. (Eds.). (1993). Cognitive issues in motor expertise. Amsterdam: North-Holland.

    Google Scholar 

  • Teteris, E., Fraser, K., Wright, B., & McLaughlin, K. (2012). Does training learners on simulators benefit real patients? Advances in Health Sciences Education, 17(1), 137–144. doi:10.1007/s10459-011-9304-5.

    Article  Google Scholar 

  • The Royal College of Physicians and Surgeons of Canada. (2012). Objectives of training in the subspecialty of general internal medicine. http://www.royalcollege.ca/cs/groups/public/documents/document/y2vk/mdaw/~edisp/tztest3rcpsced000901.pdf

  • Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 677.

    Google Scholar 

  • Woods, N. N. (2007). Science is fundamental: The role of biomedical knowledge in clinical reasoning: Clinical expertise. Medical Education, 41(12), 1173–1177. doi:10.1111/j.1365-2923.2007.02911.x.

    Article  Google Scholar 

  • Woods, N. N., Brooks, L. R., & Norman, G. R. (2005). The value of basic science in clinical diagnosis: Creating coherence among signs and symptoms. Medical Education, 39(1), 107–112. doi:10.1111/j.1365-2929.2004.02036.x.

    Article  Google Scholar 

  • Woods, N. N., Brooks, L. R., & Norman, G. R. (2007a). It all make sense: Biomedical knowledge, causal connections and memory in the novice diagnostician. Advances in Health Sciences Education, 12(4), 405–415. doi:10.1007/s10459-006-9055-x.

    Article  Google Scholar 

  • Woods, N. N., Brooks, L. R., & Norman, G. R. (2007b). The role of biomedical knowledge in diagnosis of difficult clinical cases. Advances in Health Sciences Education, 12(4), 417–426. doi:10.1007/s10459-006-9054-y.

    Article  Google Scholar 

  • Woods, N. N., Neville, A. J., Levinson, A. J., Howey, E. H., Oczkowski, W. J., & Norman, G. R. (2006). The value of basic science in clinical diagnosis. Academic Medicine, 81(10), S124–S127.

    Article  Google Scholar 

  • Wulf, G. (2007). Self-controlled practice enhances motor learning: Implications for physiotherapy. Physiotherapy, 93(2), 96–101. doi:10.1016/j.physio.2006.08.005.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported through operational funds from the BMO Chair in Health Professions Education Research and graduate student funding from the NSERC Alexander Graham Bell Canada Graduate Scholarship. The authors would like to thank the Mount Sinai Surgical Skills Centre for their logistical support and Dr. Faizal Haji, Dr. Gianni Lorello, Dr. Malika Sharma, and Dr. Brandon Girardi for sharing their clinical expertise in the development of the educational materials. We also thank Dr. Jimmie Leppink for his assistance with statistical methodology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. H. Cheung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheung, J.J.H., Kulasegaram, K.M., Woods, N.N. et al. Knowing How and Knowing Why: testing the effect of instruction designed for cognitive integration on procedural skills transfer. Adv in Health Sci Educ 23, 61–74 (2018). https://doi.org/10.1007/s10459-017-9774-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10459-017-9774-1

Keywords

Navigation