Skip to main content

Advertisement

Log in

Population dynamic and management of Pinus oocarpa and Tabebuia rosea within silvopastoral systems in Central America

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Silvopastoral systems—the management of trees within pastures from natural regeneration or planting—are a strategy to promote sustainable livestock systems and ecosystems services. Timber is one of the products from these systems with potential to increase family revenues. The management of natural regeneration and population dynamics of trees is a feasible way to harvest timber and maintain environmental services. In this research, we modeled the population dynamics of Pinus oocarpa and Tabebuia rosea, two important timber species of silvopastoral systems in Central America. The results showed that farmers manage a significant density of different tree species from natural regeneration. However, only the species with well-known uses or desired services are allowed to remain. The natural regeneration is more impressive in silvopastoral systems with natural grass than those with exotic grass. Farming practices, for instance use of fire for weed control, are the main reasons for low rates of natural regeneration in pastures with exotic grass. The models of population dynamics for both species showed that the sustainable timber harvest plans are a viable activity in pasturelands under natural-regeneration management plans. Innovative farmers are willing to adopt silvicultural practices and management of population dynamics to increase timber revenues and sustainability if forestry regulations for sustainable use of trees in farms are simplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade HJ, Brook R, Ibrahim M (2008) Growth, production and carbon sequestration of silvopastoral systems with native timber species in the dry lowlands of Costa Rica. Plant Soil 308(1–2):11–22. doi:10.1007/s11104-008-9600-x

    Article  CAS  Google Scholar 

  • Bajzelj B, Richards KS, Allwood JM, Smith P, Dennis JS, Curmi E, Gilligan CA (2014) Importance of food-demand management for climate mitigation. Nat Clim Change 4(10):924–929. doi:10.1038/nclimate2353

    Article  Google Scholar 

  • Beer J (2012) Producción de árboles maderables en linderos. In: Detlefsen G, Somarriba E (eds) Producción de madera en sistemas agroforestales de Centroamérica. CATIE, Turrialba, pp 199–210. (Technical Series)

  • Bertomeu M, Roshetko JM, Rahayu S (2011) Optimum pruning intensity for reducing crop suppression in a Gmelina–maize smallholder agroforestry system in Claveria, Philippines. Agrofor Syst 83(2):167–180. doi:10.1007/s10457-011-9435-y

    Article  Google Scholar 

  • CATIE (Centro Agronómico Tropical de Investigación y Enseñanza, Costa Rica) (2003) OFI (Oxford Forestry Institute, United Kingdom). Árboles de Centroamérica, vol 1. CATIE, Turrialba

  • Cubbage F, Glenn V, Paul Mueller J, Robison D, Myers R, Luginbuhl J-M, Myers R (2012) Early tree growth, crop yields and estimated returns for an agroforestry trial in Goldsboro, North Carolina. Agrofor Syst 86(3):323–334. doi:10.1007/s10457-012-9481-0

    Article  Google Scholar 

  • Dagang ABK, Nair PKR (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59(2):149–155. doi:10.1023/A:1026394019808

    Article  Google Scholar 

  • de Freitas JV, Pinard MA (2008) Applying ecological knowledge to decisions about seed tree retention in selective logging in tropical forests. For Ecol Manag 256(7):1434–1442. doi:10.1016/j.foreco.2008.03.001

    Article  Google Scholar 

  • de Sousa KFD, Detlefsen G, de Melo Virginio Filho E, Tobar D, Casanoves F (2015) Timber yield from smallholder agroforestry systems in Nicaragua and Honduras. Agrofor Syst 90(2):207–218

    Article  Google Scholar 

  • Detlefsen G, Somarriba E (2012) Producción de madera en sistemas agroforestales de Centroamérica. 1 edn.: Detlefsen G, Somarriba E (eds) CATIE, Turrialba, 244 p (Manual Técnico No. 109)

  • Detlefsen G, Marmillod D, Scheelje M, Ibrahim M (2012) Protocolo para la instalación de parcelas permanentes de medición de la producción maderable en sistemas agroforestales de Centroamérica. CATIE, Turrialba, 19 p. (Manual Técnico No. 107)

  • Esquivel MJ, Harvey CA, Finegan B, Casanoves F, Skarpe C (2008) Effects of pasture management on the natural regeneration of neotropical trees. J Appl Ecol 45(1):371–380. doi:10.1111/j.1365-2664.2007.01411.x

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of The United Nations, Italy) (2013). Advancing agroforestry on the policy agenda: a guide for decision-makers. In: Place F, Gauthier M (eds), vol 1. Food and Agriculture Organization of The United Nations, Rome, 49 p. (Agroforestry Working Paper)

  • Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, Martinez J, Muñoz D, Restrepo C, Saénz JC, Villacís J, Sinclair FL (2011) Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manag 261(10):1664–1674. doi:10.1016/j.foreco.2010.11.004

    Article  Google Scholar 

  • Hoch L, Pokorny B, de Jong W (2009) How successful is tree growing for smallholders in the Amazon? Int For Rev 11(3):299–310. doi:10.1505/ifor.11.3.299

    Google Scholar 

  • Imbach P, Molina L, Locatelli B, Roupsard O, Mahé G, Neilson R, Corrales L, Scholze M, Ciais P (2012) Modeling potential equilibrium states of vegetation and terrestrial water cycle of mesoamerica under climate change scenarios. J Hydrometeorol 13(2):665–680. doi:10.1175/JHM-D-11-023.1

    Article  Google Scholar 

  • Kaimowitz D (1996) Livestock and deforestation Central America in the 1980s and 1990s: a policy perspective. Jakarta, Indonesia, Center For International Forestry Research. 94 p

  • McAdam JH, Sibbald AR, Teklehaimanot Z, Eason WR (2007) Developing silvopastoral systems and their effects on diversity of fauna. Agrofor Syst 70(1):81–89. doi:10.1007/s10457-007-9047-8

    Article  Google Scholar 

  • Plath M, Mody K, Potvin C, Dorn S (2011) Do multipurpose companion trees affect high value timber trees in a silvopastoral plantation system? Agrofor Syst 81(1):79–92. doi:10.1007/s10457-010-9308-9

    Article  Google Scholar 

  • Roshetko JM, Rohadi D, Perdana A, Sabastian G, Nuryartono N, Pramono AA, Widyani N, Manalu P, Fauzi MA, Sumardamto P, Kusumowardhani N (2013) Teak agroforestry systems for livelihood enhancement, industrial timber production, and environmental rehabilitation. For Trees Livelihoods 22(4):241–256. doi:10.1080/14728028.2013.855150

    Article  Google Scholar 

  • Sabastian G, Kanowski P, Race D, Williams E, Roshetko J (2014) Household and farm attributes affecting adoption of smallholder timber management practices by tree growers in Gunungkidul region, Indonesia. Agrofor Syst 88(2):257–268. doi:10.1007/s10457-014-9673-x

    Article  Google Scholar 

  • Santos Martín F, Bertomeu M, van Noordwijk M, Navarro R (2012) Understanding forest transition in the Philippines: main farm-level factors influencing smallholder’s capacity and intention to plant native timber trees. Small-scale For 11(1):47–60. doi:10.1007/s11842-011-9166-y

    Article  Google Scholar 

  • Schwarz OJ, Beaty RM, Franco EO (1991) Egg-cone pine (Pinus oocarpa Schiede). In: Bajaj YPS (ed). Trees III. Springer, Berlin, pp 304–316. doi: 10.1007/978-3-662-13231-9_19

  • Sierra J, Dulormne M, Desfontaines L (2002) Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles. Agrofor Syst 54(2):87–97. doi:10.1023/A:1015025401946

    Article  Google Scholar 

  • Somarriba E (1988) Guava (Psidium guajava L.) trees in a pasture: population model, sensitivity analyses, and applications. Agrofor Syst 6(1):3–17. doi:10.1007/BF02220105

    Article  Google Scholar 

  • Somarriba E (2012) The population dynamics and productivity of Acacia pennatula in the pasturelands of the Nature Reserve Mesas de Moropotente, Estelí, Nicaragua. Agrofor Syst 84(1):1–9. doi:10.1007/s10457-011-9447-7

    Article  Google Scholar 

  • Somarriba E, Beer J, Muschler RG (2001) Research methods for multistrata agroforestry systems with coffee and cacao: recommendations from two decades of research at CATIE. Agrofor Syst 53:195–203. doi:10.1023/A:1013380605176

    Article  Google Scholar 

  • Versteeg S, Hansen CP, Pouliot M (2016) Factors influencing smallholder commercial tree planting in Isabel Province, the Solomon Islands. Agrofor Syst. doi:10.1007/s10457-016-9940-0

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Ministry of Foreign Affairs of Finland through the Finnfor Project (CATIE, Costa Rica) and Natura Inovação e Tecnologia de Produtos (Brazil) through the "Programa Natura Campus". We would like to thank the farmers and field technicians for their contributions in the establishment of the Permanent Sample Plots and data collection. Professor Eduardo Somarriba and Rolando Cerda provided support in population dynamics modeling. Anonymous reviewers provided useful recommendations that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kauê de Sousa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, K., Detlefsen, G., Tobar, D. et al. Population dynamic and management of Pinus oocarpa and Tabebuia rosea within silvopastoral systems in Central America. Agroforest Syst 91, 1119–1127 (2017). https://doi.org/10.1007/s10457-016-9988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-9988-x

Keywords

Navigation