Skip to main content

Advertisement

Log in

Species richness increases income in agroforestry systems of eastern Amazonia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Biodiversity is believed to reduce risks (resistance and resilience against perturbations), to increase productivity via niche expansion, and possibly also to improve resource efficiency via mutually benefic species interactions. Agroforestry has been postulated as an ideal pathway of maintaining or restoring biodiversity in a socioeconomically sustainable manner. This study tests the relevance of agroforestry species diversity and richness on socioeconomic performance in a wide range of agroforestry systems in 38 farms aggregated in four clusters of sites in eastern Amazonia. We cover both commercial and subsistence agroforestry, ranging from simply structured plantations to diverse systems (enriched fallows, multi-strata home gardens), as well as pastures and shifting cultivation for comparisons. We quantify (i) all cultivated species, classifying them economically into species with commercial value, primarily subsistence purpose species or ‘non-productive’ species, and (ii) socioeconomic system variables (costs, monetary/non-monetary income, degree of satisfaction). Land-use intensity (per-hectare costs and income) was highest in commercial agroforestry and subsistence home gardens, and lowest in enriched fallows and pastures. All agroforestry systems resulted in higher income:cost ratios and greater satisfaction than pastures and shifting cultivation. Net income, non-monetary income and income:cost ratio were maximum in home gardens. Total species richness was negatively related with costs and monetary income, but not with non-monetary income, due to occupation of space by ‘non-productive’ species (juveniles or species providing ecosystem services). By contrast, productive (combining commercial and subsistence) species richness was positively related with (mainly non-monetary) income, net income and income:cost ratio. According to GLM, both productive species richness and Shannon–Wiener diversity positively affected net income. Future efforts for food security and poverty reduction need to focus more on species-rich agroforestry systems, both in terms of applied research and of extension service programs. Notably, the ubiquitous and successful home gardens merit far more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Almeida AWB, Shiraishi J, Mesquita BA, Abreu Araújo HF, Martins CC, da Silva MHP (2001) Economia do babaçu. Interstate Movement of Babassu Nutcrackers (MIQCB), São Luis

    Google Scholar 

  • Altieri MA, Funes-Monzote FR, Petersen P (2011) Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron Sustain Dev 32:1–13. doi:10.1007/s13593-011-0065-6

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728. doi:10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Angiosperm Phylogeny Group III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Atangana A, Khasa D, Chang S, Degrande A (2014) Definitions and classification of agroforestry systems. In: Atangana A, Khasa D, Chang S, Degrande A (eds) Tropical agroforestry. Springer, Dordrecht, pp 35–47

    Chapter  Google Scholar 

  • Berkes F, Colding J, Folke C (2003) Navigating social-ecological systems, building resilience for complexity and change. Cambridge University Press, New York. doi:10.1017/CBO9780511541957

    Google Scholar 

  • Brady NC (1996) Alternatives to slash-and-burn: a global imperative. Agric Ecosyst Environ 58:3–11

    Article  Google Scholar 

  • Brown S (2002) Measuring, monitoring, and verification of carbon benefits for forest-based projects. Philos Trans A Math Phys Eng Sci 360:1669–1683. doi:10.1098/rsta.2002.1026

    Article  CAS  PubMed  Google Scholar 

  • Cabell JF, Oelofse M (2012) An indicator framework for assessing agroecosystem resilience. Ecol Soc 17:1–18. doi:10.5751/ES-04666-170118

    Google Scholar 

  • Cannell MGR, Noordwijk M, Ong CK (1996) The central agroforestry hypothesis: the trees must acquire resources that the crop would not otherwise acquire. Agrofor Syst 34:27–31

    Article  Google Scholar 

  • Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415:426–429. doi:10.1038/415426a

    Article  CAS  PubMed  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J et al (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA 108:8311–8316. doi:10.1073/pnas.1016799108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, New York

    Book  Google Scholar 

  • da Semedo RJCG, Barbosa RI (2007) Fruit trees in urban home gardens of Boa Vista, Roraima, Brazilian Amazonia. Acta Amaz 37:497–504. doi:10.1590/S0044-59672007000400003

    Article  Google Scholar 

  • das Chagas Oliveira F, Collado ÁC, Leite LFC (2013) Autonomy and sustainability: an integrated analysis of the development of new approaches to agrosystem management in family-based farming in Carnaubais Territory, Piauí, Brazil. Agric Syst 115:1–9. doi:10.1016/j.agsy.2012.09.005

  • Denich M, Vielhauer K, Kato MA, Block A, Kato OR, Sá TDA, Lücke W, Vlek PLG (2004) Mechanized land preparation in forest-based fallow systems: the experience from Eastern Amazonia. Agrofor Syst 6:91–106. doi:10.1023/B:AGFO.0000028992.01414.2a

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW, InfoStat versión (2012) Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi:10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Diemont SAW, Martin JF (2009) Lacandon Maya ecosystem management: sustainable design for subsistence and environmental restoration. Ecol Appl 19:254–266. doi:10.1890/08-0176.1

    Article  PubMed  Google Scholar 

  • Faye MD, Weber JC, Abasse TA, Boureima M, Larwanou M, Bationo AB, Diallo BO, Sigué H, Dakouo JM, Samaké O, Sonogo Diaité D (2011) Farmers’ preferences for tree functions and species in the West African Sahel. For Trees Livelihoods 20:113–136. doi:10.1080/14728028.2011.9756702

    Article  Google Scholar 

  • Galluzzi G, Eyzaguirre P, Negri V (2010) Home gardens: neglected hotspots of agro-biodiversity and cultural diversity. Biodivers Conserv 19:3635–3654. doi:10.1007/s10531-010-9919-5

    Article  Google Scholar 

  • García-Barrios L, Ong CK (2004) Ecological interactions, management lessons and design tools in tropical agroforestry systems. Agrofor Syst 61:221–236. doi:10.1023/B:AGFO.0000029001.81701.f0

    Google Scholar 

  • Godsey LD (2010) Economic budgeting for agroforestry practices. University of Missouri Center for Agroforestry, Columbia

    Google Scholar 

  • Gomes GS (2010) Quintais agroflorestais no município de Irati-Paraná, Brasil: agrobiodiversidade e sustentabilidade socioeconômica e ambiental. PhD thesis, Federal University of Paraná, Curitiba, Brazil

  • Huss-Ashmore R, Goodman JL (1988) Seasonality of work, weight, and body composition for women in highland Lesotho. Res Pap Sci Archaeol 5:29–44

    Google Scholar 

  • IBGE (Brazilian Institute of Geography and Statistics) (2010) Diretoria de pesquisas, coordenação de agropecuária, produção da extração vegetal e da silvicultura, v.25, Online. www.ibge.gov.br/cidadesat/topwindow.htm. Accessed July 16 2013

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. doi:10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Kato OR (2009) Projeto dendê: Sistemas agroflorestais na agricultura familiar (The oil palm project: agroforestry systems in smallholder agriculture). Embrapa Eastern Amazonia, Belém

    Google Scholar 

  • Koutika L-S, Nolte C, Yemefack M et al (2005) Leguminous fallows improve soil quality in south-central Cameroon as evidenced by the particulate organic matter status. Geoderma 125:343–354. doi:10.1016/j.geoderma.2004.09.009

    Article  Google Scholar 

  • Kumar BM (2006) Carbon sequestration potential of tropical homegardens. In: Kumar BM, Nair PKR (eds) Tropical homegardens: a time-tested example of sustainable agroforestry., Advances in agroforestry 3Springer, Dordrecht, pp 185–204

    Chapter  Google Scholar 

  • Lawrence D, Radel C, Tully K, Schmook B, Schneider L (2010) Untangling a decline in tropical forest resilience: constraints on the sustainability of shifting cultivation across the globe. Biotropica 42:21–30. doi:10.1111/j.1744-7429.2009.00599.x

    Article  Google Scholar 

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193. doi:10.1525/bio.2011.61.3.4

    Article  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17. doi:10.1034/j.1600-0706.2000.910101.x

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its management. Princeton University Press, Princeton

    Book  Google Scholar 

  • McHenry MP (2009) Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: certainty, uncertainty and risk. Agric Ecosyst Environ 129:1–7. doi:10.1016/j.agee.2008.08.006

    Article  CAS  Google Scholar 

  • MDA (Ministério do Desenvolvimento Agrário) (2011) Estatísticas do meio rural 2010–2011, 4th edn. Dieese, São Paulo. http://www.nead.gov.br/portal/nead/nead-especial

  • Metzger JP (2002) Landscape dynamics and equilibrium in areas of slash-and-burn agriculture with short and long fallow period (Bragantina region, NE Brazilian Amazon). Landsc Ecol 17:419–431

    Article  Google Scholar 

  • Muchavisoy HM (2013) Carbon stocks in rainforests, secondary regrowth and agroforestry systems of eastern Amazonia. M.Sc. thesis, Maranhão State University, São Luís, Brazil

  • Nair PKR (1985) Classification of agroforestry systems. Agrofor Syst 3:97–128. doi:10.1007/BF00122638

    Article  Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Nair PKR (2001) Do tropical homegardens elude science, or is it the other way around? Agrofor Syst 53:239–245. doi:10.1023/A:1013388806993

    Article  Google Scholar 

  • Nair PKR (2013) Agroforestry: trees in support of sustainable agriculture. In: Reference module in earth systems and environmental sciences. Elsevier, Amsterdam. doi:10.1016/B978-0-12-409548-9.05088-0

  • Padoch C, Pinedo-Vasquez M (2010) Saving slash-and-burn to save biodiversity. Biotropica 42:550–552. doi:10.1111/j.1744-7429.2010.00681.x

    Article  Google Scholar 

  • Pascual U (2005) Land use intensification potential in slash-and-burn farming through improvements in technical efficiency. Ecol Econ 52:497–511. doi:10.1016/j.ecolecon.2004.09.012

    Article  Google Scholar 

  • Peyre A, Guidal A, Wiersum KF, Bongers F (2006) Dynamics of homegarden structure and function in Kerala, India. Agrofor Syst 66:101–115. doi:10.1007/s10457-005-2919-x

    Article  Google Scholar 

  • Porro R (2005) Palms, Pastures, and Swidden Fields: the grounded political ecology of agro-extractive/shifting-cultivator peasants in Maranhão, Brazil. Hum Ecol 33:17–56. doi:10.1007/s10745-005-1654-2

    Article  Google Scholar 

  • Porro R, Mesquita BA, Santos I (2004) Expansão e trajetória da pecuária na Amazônia: vales dos rios Mearim e Pindaré-Maranhão. Editora Universidade de Brasília/Embrapa Acre, Brasília, p 183

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303. doi:10.1007/s13593-011-0022-4

    Article  Google Scholar 

  • Richards PW (1996) The tropical rain forest, 2nd edn. Cambridge University Press, London

    Google Scholar 

  • Rosa LS, Vieira TA, Santos APA, Menezes AAS, Rodriguês AF, Perote JRS, Lopez CVC (2009) Limites e oportunidades para a adoção de sistemas agroflorestais pelos agricultores familiares da microrregião Bragantina, PA. In: Porro R (ed) Alternativa agroflorestal na Amazônia em transformação. EMBRAPA, Brasília, pp 645–670

    Google Scholar 

  • Sarmento CMB, Veiga JB, Rischkowsky B, Kato OR, Siegmund-Schultze M (2010) Caracterização e avaliação da pastagem do rebanho de agricultores familiares do nordeste paraense. Acta Amaz 40:415–423. doi:10.1590/S0044-59672010000300002

    Article  Google Scholar 

  • Schleuning M, Fründ J, García D (2015) Predicting ecosystem functions from biodiversity and mutualistic networks: an extension of trait-based concepts to plant-animal interactions. Ecography 38:380–392. doi:10.1111/ecog.00983

    Article  Google Scholar 

  • Schroth G, da Mota MSS (2014) Agroforestry: complex multistrata agriculture. In: Encyclopedia of agriculture and food systems. 195–207. doi:10.1016/B978-0-444-52512-3.00030-9

  • Schroth G, Lehmann J, Rodrigues MRL, Barros E, Macêdo JLV (2001) Plant-soil interactions in multistrata agroforestry in the humid tropics. Agrofor Syst 53:85–102

    Article  Google Scholar 

  • Schulze ED, Mooney HA (1993) Biodiversity and ecosystem function. Springer, Berlin

    Book  Google Scholar 

  • Shepherd GJ, Fitopac-shell IGP (2009) Fitopac user´s manual. Federal University of Campinas, Brazil

  • Sibelet MFN, Smektala G (1999) Guide méthodologique pour la conduite d’une étude en milieu rural. Cours de l’ENGREF, Montpellier

    Google Scholar 

  • Somarriba E, Cerda R, Orozco L et al (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57. doi:10.1016/j.agee.2013.04.013

    Article  Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J et al (2009) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51. doi:10.1007/s10457-009-9247-5

    Article  Google Scholar 

  • Souza HN, Graaff J, Pulleman MM (2011) Strategies and economics of farming systems with coffee in the Atlantic Rainforest Biome. Agrofor Syst 84:227–242. doi:10.1007/s10457-011-9452-x

    Article  Google Scholar 

  • Spjøtvoll E, Stoline MR (1973) An extension of the t-method of multiple comparison to include the cases with unequal sample sizes. J Am Stat Assoc 68:975–978

    Google Scholar 

  • StatSoft, Inc (2007) STATISTICA (Data Analysis Software System) Version 8.0. http://www.statsoft.com

  • Steffan-Dewenter I, Kessler M, Barkmann J et al (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci USA 104:4973–4978. doi:10.1073/pnas.0608409104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Styger E, Rakodondramasy HM, Pfeffer MJ, Fernandes ECM, Bates DM (2007) Influence of slash-and-burn farming practices on fallow succession and land degradation in the rainforest region of Madagascar. Agric Ecosyst Environ 119:257–269. doi:10.1016/j.agee.2006.07.012

    Article  Google Scholar 

  • Vallejo M, Casas A, Perez-Negron E, Moreno-Calles A, Hernandez-Ordonez O, Tellez O, Davila P (2015) Agroforestry systems of the lowland alluvial valleys of the Tehuacan-Cuicatlan Biosphere Reserve: an evaluation of their biocultural capacity. J Ethnobiol Ethnomed 11:8. doi:10.1186/1746-4269-11-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Veenhoven R (1994) El estudio de la satisfacción con la vida. Psychosoc Interv 3:87–116

    Google Scholar 

  • Veenhoven R (2007) Healthy happiness: effects of happiness on physical health and the consequences for preventive health care. J Happiness Stud 9:449–469. doi:10.1007/s10902-006-9042-1

    Article  Google Scholar 

  • Vieira TA, Rosa SRL, Santos MMLS (2012) Agrobiodiversidade de quintais agroflorestais no município de Bonito, Estado do Pará. Rev Ciências Agrárias (Amazonian J Agric Environ Sci) 55:159–166

    Article  Google Scholar 

  • Weiher E, Keddy P (2001) Ecological assembly rules: perspectives, advances and retreats. Cambridge University Press, Cambridge

  • Yamada M, Gholz HL (2002) An evaluation of agroforestry systems land-use change on soil nutrient dynamics in Amazonia. Agrofor Syst 55:81–87. doi:10.1023/A:1020523107243

    Article  Google Scholar 

  • Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: an analysis of global extent and geographical patterns of agro- forestry. ICRAF Working Paper 89, World Agroforestry Centre, Nairobi, Kenya. http://www.worldagroforestry.org/downloads/publications/PDFs/WP16263.PDF

Download references

Acknowledgments

This research was partially financed by the Research Fund of Maranhão State (FAPEMA), and two research fellowships were financed by CAPES (Brazilian Council of Higher Education). We would also like to thank INCRA (Federal Colonization and Land Reform Agency), Embrapa Eastern-Amazonia, MST (Movement of the Landless) and the Agricultural Cooperative of Tomé-Açu (CAMTA) for their practical and infrastructure support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Gehring.

Annex 1

Annex 1

See Table 4.

Table 4 The ten most abundant agroforestry species: shares in total abundance (over all sites), uses and origins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardozo, E.G., Muchavisoy, H.M., Silva, H.R. et al. Species richness increases income in agroforestry systems of eastern Amazonia. Agroforest Syst 89, 901–916 (2015). https://doi.org/10.1007/s10457-015-9823-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9823-9

Keywords

Navigation