Skip to main content

Advertisement

Log in

Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

While the potential of agroforestry products to contribute to rural livelihoods is well-recognized, the quantification of their yields, incomes, and value for domestic consumption (VDC) and knowledge about their relationships with biodiversity are still scarce. This information is crucial for choosing the best strategy for growing cocoa in tropical landscapes while conserving biodiversity and enhancing ecosystem services. We analyzed the contribution of cocoa agroforestry farming to the incomes and domestic consumption of small farmers’ families in 179 cocoa agroforestry systems (CAFS) (254 ha) in five Central American countries. The two hypotheses were: (1) agroforestry products are as important as cocoa in contributing to livelihoods, (2) the typology of CAFS determines the relationships between socioeconomic indicators and yield, biodiversity, and structure of the shade canopy, as well as the relationships between plant species richness and cocoa yield. We quantified the yields of agroforestry products and their contribution to net income, cash flow, and family benefits and developed a typology of CAFS production to evaluate relationships for each CAFS cluster. The main agroforestry products other than cocoa were bananas, oranges, peach palm, other fruits, and timber, which generated modest cash incomes but high VDC at low cash costs, thus contributing to family savings and food security. Timber volumes and harvest rates were low but significant increase was deemed feasible. The contribution of the set of agroforestry products to family benefits was similar or higher than cocoa, depending on the typology of the CAFS. Intensified highly diverse-dense CAFS demonstrated remarkably higher yields, net income, cash flow, and family benefits, and had more synergetic relationships than extensive CAFS and traditional highly diverse-dense CAFS, which showed more trade-offs. Our findings point to intensified highly diverse-dense CAFS as feasible for farming within a land-sparing strategy. Further research is needed to better understand the mechanisms that could regulate synergies or trade-offs to improve this type of intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvim R, Nair PKR (1986) Combination of cacao with other plantation crops: an agroforestry system in Southeast Bahia, Brazil. Agrofor Syst 4:3–15

    Article  Google Scholar 

  • Aulong S, Duray S, Temple L (2000) Dynamique et structure floristique des agroforêts à agrumes au centre du Cameroun. Fruits 55:103–114

    Google Scholar 

  • Bates D, Maechler M, Matrix LT (2011) “Package ‘lme4’”/packages/lme4/lme4. http://mirrors.dotsrc.org/pub/pub/cran/web/packages/lme4/lme4.pdf. Accessed 26 Feb 2012

  • Beer J, Muschler R, Somarriba E, Kass D (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164

    Article  Google Scholar 

  • Bisseleua D, Missoup AD, Vidal S (2009) Biodiversity conservation, ecosystem functioning, and economic incentives under cocoa agroforestry intensification. Conserv Biol 23:1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Bos MM, Steffan-Dewenter I, Tscharntke T (2007) Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agric Ecosyst Environ 120:201–205

    Article  Google Scholar 

  • Chitakira M, Torquebiau E (2010) Barriers and coping mechanisms relating to agroforestry adoption by smallholder farmers in Zimbabwe. J Agric Educ Ext 16:147–160

    Article  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Conserv Lett 2:197–205

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J, Kessler M, Wanger TC, Anshary A, Buchori D, Cicuzza D, Darras K, Putra D, Erasmi S, Pitopang R, Schmidt C, Schulze CH, Seidel D, Steffan-Dewenter I, Stenchly K, Vidal S, Weist M, Wielgoss AC, Tscharntke T (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci USA 108:8311–8316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dahlquist RM, Whelan MP, Winowiecki L, Polidoro B, Candela S, Harvey CA, Wulfhorst JD, McDaniel PA, Bosque-Pérez NA (2007) Incorporating livelihoods in biodiversity conservation: a case study of cacao agroforestry systems in Talamanca, Costa Rica. Biodivers Conserv 16:2311–2333

    Article  Google Scholar 

  • Degrande A, Schreckenberg K, Mbosso Ch, Anegbeh P, Okafor V, Kanmegne J (2006) Farmers’ fruit tree-growing strategies in the humid forest zone of Cameroon and Nigeria. Agrofor Syst 67:159–175

    Article  Google Scholar 

  • Deheuvels O (2011) Compromis entre productivité et biodiversité sur un gradient d’intensité de gestion de systèmes agroforestiers à base de cacaoyers de Talamanca, Costa Rica. SupAgro, Montpellier, p 184

    Google Scholar 

  • Deheuvels O, Avelino J, Somarriba E, Malezieux E (2012) Vegetation structure and productivity in cocoa-based agroforestry systems in Talamanca, Costa Rica. Agric Ecosyst Environ 149:181–188

    Article  Google Scholar 

  • Deheuvels O, Rousseau GX, Soto Quiroga G, Decker Franco M, Cerda R, Somarriba E (2014) How biodiversity is affected by changes in management intensity of cocoa-based agroforests?. Agrofor Syst (in press)

  • Di Rienzo JA, Casanoves F, Pla L, Vilchez S, Di Rienzo DM (2010) QEco-Quantitative ecology software: a collaborative approach. Latin Am J Conserv 1:73–75

    Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2013) InfoStat versión 2009. Grupo InfoStat, Universidad Nacional de Córdoba, Argentina

  • Duguma B, Gockowski J, Bakala J (2001) Smallholder Cacao (Theobroma cacao Linn.) cultivation in agroforestry systems of West and Central Africa: challenges and opportunities. Agrofor Syst 51:177–188

    Article  Google Scholar 

  • Egbe NE, Adenikinju SA (1990) Effect of intercropping on potential yield of cocoa in south western Nigeria. Café, Cacao, Thé 34:281–284

    Google Scholar 

  • Fundación Hondureña de Investigación Agrícola (FHIA) (2007) Uso de especies maderables tropicales latifoliadas como sombra del cacao. Programa de Cacao y Agroforestería. Hoja técnica 1:1–5

    Google Scholar 

  • Franzen M, Borgerhoff M (2007) Ecological, economic and social perspectives on cocoa production worldwide. Biodivers Conserv 16:3835–3849

    Article  Google Scholar 

  • Gockowski J, Dury S (1999) The economics of cocoa-fruit agroforests in southern Cameroon. In: Proceedings in international symposium multi-strata agroforetry systems with perennial crops. Costa Rica, p 239–241

  • Gockowski J, Sonwa D (2011) Cocoa intensification scenarios and their predicted impact on co2 emissions, biodiversity conservation, and rural livelihoods in the guinea rain forest of west africa. Environ Manage 48:307–321

    Article  PubMed  Google Scholar 

  • Gockowski J, Tchatat M, Dondjang JP, Hietet G, Fouda T (2010) An empirical analysis of the biodiversity and economic returns to cocoa agroforests in southern Cameroon. J Sustainable For 29:638–670

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Bamford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  CAS  PubMed  Google Scholar 

  • Guillerme S, Kumar BM, Menon A, Hinnewinkel C, Maire E, Santhoshkumar A (2011) Impacts of public policies and farmer preferences on agroforestry practices in kerala, India. Environ Manag 48:351–364

    Article  CAS  Google Scholar 

  • Herzog F, Gotsch N (1998) Assessing the sustainability of smallholder tree crop production in the tropics: a methodological outline. J Sustain Agric 11:13–37

    Article  Google Scholar 

  • Jagoret P, Bouambi E, Menimo T, Domkam I, Batomen F (2008) Analyse de la diversité des systèmes de pratiques en cacaoculture. Cas du Centre Cameroun. Biotechnol Agron Soc Environ 12(4):367–377

    Google Scholar 

  • Jagoret P, Todem Ngogue H, Bouambi E, Battini JL, Nyassé S (2009) Diversification des exploitations agricoles à base de cacaoyer au Centre Cameroun: mythe ou réalité ? Biotechnol Agron Soc Environ 13(2):271–280

    Google Scholar 

  • Jagoret P, Michel-Dounias I, Malézieux E (2011) Long-term dynamics of cocoa agroforests: a case study in central Cameroon. Agrofor Syst 81:267–278

    Article  Google Scholar 

  • Jagoret P, Michel-Dounias I, Snoeck D, Todem Ngnogue H, Malézieux E (2012) Afforestation of savannah with cocoa agroforestry systems: a small-farmer innovation in central Cameroon. Agrofor Syst 86:493–504

    Article  Google Scholar 

  • Jamnadass RH, Dawson IK, Franzel S, Leakey RRB, Mithöfer D, Akinnifesi FK, Tchoundjeu Z (2011) Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. International For Rev 13:338–354

    Google Scholar 

  • Kessler M, Hertel D, Jungkunst HF, Kluge J, Abrahamczyk S et al (2012) Can joint carbon and biodiversity management in tropical agroforestry landscapes be optimized? PLoS ONE 7(10):e47192. doi:10.1371/journal.pone.0047192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwornu JKM, Agyei-Holmes A, Osei-Asare YB (2011) Econometric analysis of cocoa production and deforestation in Ghana: the role of technological innovations. World J Agric Sci 7:722–732

    Google Scholar 

  • Laird SA, Leke Awung G, Lysinge RJ (2007) Cocoa farms in the Mount Cameroon region: biological and cultural diversity in local livelihoods. Biodivers Conserv 16:2401–2427

    Article  Google Scholar 

  • Leach AW, Mumford JD, Krauss U (2002) Modelling Moniliophthora roreri in Costa Rica. Crop Protection 21:317–326

    Article  Google Scholar 

  • Leakey RRB, Tchoundjeu Z (2001) Diversification of tree crops: domestication of companion crops for poverty reduction and environmental services. Expl Agric 37:279–296

    Article  Google Scholar 

  • Leakey RRB, Tchoundjeu Z, Schreckenberg K, Shackleton SE, Shackleton ChM (2005) Agroforestry tree products (AFTPs): targeting poverty reduction and enhanced livelihoods. Int J Agric Sustain 3:1–23

    Article  Google Scholar 

  • López A, Somarriba E (2005) Árboles frutales en fincas de cacao orgánico del Alto Beni, Bolivia. Agrofor en las Américas 43–44:38–45

    Google Scholar 

  • Millard E (2011) Incorporating agroforestry approaches into commodity value chains. Environ Manag 48:365–377

    Article  Google Scholar 

  • Mussak MF, Laarman JG (1989) Farmers’ production of timber trees in cacao-coffee region of coastal Ecuador. Agrofor Syst 9:155–170

    Article  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307

    Article  CAS  Google Scholar 

  • Ngo Bieng MA, Gidoin C, Avelino J, Cilas C, Deheuvels O, Wery J (2013) Diversity and spatial clustering of shade trees affect cacao yield and pathogen pressure in Costa Rican agroforests. Basic Appl Ecol 14(4):329–336

    Article  Google Scholar 

  • Obiri BD, Bright GA, McDonald MA, Anglaeere LCN, Cobbina J (2007) Financial analysis of shaded cacao in Ghana. Agrofor Syst 71:139–149

    Article  Google Scholar 

  • Oladokun MAO (1990) Tree crop based agroforestry in Nigeria: a checklist of crops intercropped with cacao. Agrofor Syst 11:227–241

    Article  Google Scholar 

  • Orozco L, Somarriba E (2005) Árboles maderables en fincas de cacao orgánico del Alto Beni, Bolivia. Agroforestería en las Américas 43–44:46–53

    Google Scholar 

  • Orozco L, López A, Somarriba E (2008) Enriquecimiento de fincas cacaoteras con frutales y maderables en Alto Beni, Bolivia. Agroforestería en las Américas 46:65–72

    Google Scholar 

  • Osei-Bonsu K, Opoku-Ameyaw K, Amoah FM, Oppong FK (2002) Cacao-coconut intercropping in Ghana: agronomic and economic perspectives. Agrofor Syst 55:1–8

    Article  Google Scholar 

  • Palm CA, van Noordwijk M, Woomer PL, Alegre JC, Arévalo L, Castilla CE, Cordeiro DG, Hairiah K, Kotto-Same J, Moukam A, Parton WJ, Riese A, Rodrigues V, Sitompul SM (2005) Carbon losses and sequestration after land use change in the humid tropics. In: Palm CA, Vosti SA, Sanchez PA, Ericksen PJ (eds) Slash and burn: the search for alternatives. Columbia University Press, New York, p 463

    Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agroecosystems—a new conservation paradigm. Ann N Y Acad Sci 1134:173–200

    Article  PubMed  Google Scholar 

  • Perfecto I, Rice RA, Greenberg R (1996) Shade Coffee: a disappearing refuge for biodiversity. Bioscience 46:598–608

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effect models in S and S-PLUS. Springer, New York

    Book  Google Scholar 

  • Place F, Dewees P (1999) Policies and incentives for the adoption of improved fallows. Agrofor Syst 47:323–343

    Article  Google Scholar 

  • Ramírez OA, Somarriba E, Ludewigs T, Ferreira P (2001) Financial returns, stability and risk of cacao-plantain-timber agroforestry systems in Central America. Agrofor Syst 51:141–154

    Article  Google Scholar 

  • Rice R (2008) Agricultural intensification within agroforestry: the case of coffee and wood products. Agric Ecosyst Environ 128:212–218

    Article  Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29:81–87

    Google Scholar 

  • Rosenberg DE, Marcotte TP (2005) Land-use system modeling and analysis of shaded cacao production in Belize. Agrofor Syst 64:117–129

    Article  Google Scholar 

  • Rousseau GX, Deheuvels O, Rodriguez Arias I, Somarriba E (2012) Indicating soil quality in cacao-based agroforestry systems and old-growth forests: the potential of soil macrofauna assemblage. Ecol Ind 23:535–543

    Article  Google Scholar 

  • Ryan D, Bright GA, Somarriba E (2009) Damage and yield change in cocoa crops due to harvesting of timber shade trees in Talamanca, Costa Rica. Agrofor Syst 77:97–106

    Article  Google Scholar 

  • Sambuichi RHR (2006) Estrutura e dinámica do componente arbóreo em área de cabruca na região cacaueira do sul da Bahia. Acta Botanica Brasilera 20:943–954

    Article  Google Scholar 

  • Sánchez J, Dubón A, Krigsvold D (2002) Uso de rambután (Nephelium lappaceum) con cedro (Cedrela odorata) y Laurel negro (Cordia megalantha) como sombra permanente en el cultivo de cacao. Proc Interamer Soc Trop Hort 46:57–60

    Google Scholar 

  • Scherr SJ, Wallace C, Buck L (2010) Rural innovation for food security and poverty reduction in the 21st century: issues for Africa and the World. Issues Paper for State of the World 2011: Innovations that nourish the planet. http://www.worldwatch.org/files/pdf/SOW11%20Issues%20Paper_%20Annex_Final.pdf. Accessed 28 July 2013

  • Schroth G, Harvey CA (2007) Biodiversity conservation in cocoa production landscapes: an overview. Biodivers Conserv 16:2237–2244

    Article  Google Scholar 

  • Schroth G, Da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) (2004) Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington, DC, p 523

    Google Scholar 

  • Schulze CH, Waltert M, Kessler PJA, Pitopang R, Shahabuddin, Veddeler D, Mu¨hlenberg M, Gradstein SR, Leuschner C, Steffan-Dewenter I, Tscharntke T (2004) Biodiversity indicator groups of tropical land-use systems: comparing plants, birds and insects. Ecol Appl 14:1321–1333

    Article  Google Scholar 

  • Sharrock S, Frison E (1999) Musa production around the world-trends, varieties and regional importance. INIBAP Annual Report (1998). Montpellier, pp 42–47

  • Smith P, Martino D (2007) Agriculture, in climate change 2007. Fourth IPCC Assessment Report. IPCC, Geneva, p 56

  • Snoeck D, Lacote R, Kéli J, Doumbia A, Chapuset T, Jagoret P, Gohet É (2013) Association of rubber with other tree crops can be more profitable than hevea monocrop during first 12 years. Ind Crops Prod 43:578–586

    Article  Google Scholar 

  • Somarriba E (2007) Cacao and Shade Trees: Production, Diversification and Environmental Services. GRO-Cacao, No.11. p. 1–4

  • Somarriba E, Beer J (2011) Productivity of theobroma cacao agroforestry systems with timber or legume service shade trees. Agrofor Syst 81:109–121

    Article  Google Scholar 

  • Somarriba E, Beer J, Alegre-Orihuela J, Andrade H, Cerda R, DeClerck F, Detlefsen G, Escalante M, Giraldo LA, Ibrahim M, Krishnamurthy L, Mena VE, Mora-Delgado J, Orozco L, Scheelje M, Campos JJ (2012) Mainstreaming agroforestry in Latin America. In: Nair PKR, Garrity DP (eds) Agroforestry: the way forward. Advances in Agroforestry 9. Springer, New York, pp 429–453

  • Somarriba E, Cerda R, Orozco L, Cifuentes M, Davila H, Espin T, Mavisoy H, Avila G, Alvarado E, Poveda V, Astorga C, Say E, Deheuvels O (2013) Carbon stocks and cocoa yields in agroforestry systems of Central America. Agric Ecosyst Environ 173:46–57

    Article  Google Scholar 

  • Somarriba E, Suárez-Islas A, Calero-Borge W, Villota A, Castillo C, Vilchez S, Deheuvels O, Cerda R (2014) Cocoa-timber agroforestry systems: Theobroma cacaoCordia alliodora in Central America. Agrofor Syst. doi:10.1007/s10457-014-9692-7

  • Steffan-Dewenter I, Kessler M, Barkmann J et al (2007) Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proc Natl Acad Sci USA 104:4973–4978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tejada C, Andujar F (2004) Caracterización del sistema de producción cacao (Theobroma cacao) en la provincia de Duarte. Proceedings Agroforestería: resultados de investigación. Santo Domingo, República Dominicana, pp 81–96

  • Texeira A (1999) Economic study of four agroforestry models with cocoa crops in Brazilian Amazonia. Proceedings in International symposium Multistrata agroforestry systems with perennial crops. Costa Rica, pp 272–276

  • Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Lscher DH, Juhrbandt J, Kessler M, Perfecto I, Scherber Ch, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629

    Article  Google Scholar 

  • Villareal A, Carrero O, Arrends E, Sanchez D, Escalante E (2006) Evaluación de rendimientos y rentabilidad de los componentes asociados de Swietenia macrophyla (Caoba), Cedrela odorata (Cedro) y Carica papaya (Lechosa), establecidos en ensayos agroforestales en la finca ULA, estación experimental Caparo, EDO. Barinas. Venezuela Rev For Lat 39:85–104

    Google Scholar 

  • Wade ASI, Asas A, Hadley P, Mason J, Ofori-Frimpong K, Preece D, Spring N, Norris K (2010) Management strategies for maximizing carbon storage and tree species diversity in cocoa-growing landscapes. Agric Ecosyst Environ 138:324–334

    Article  Google Scholar 

  • Yamada M, Gholz HL (2002) An evaluation of agroforestry systems as a rural development option for the Brazilian Amazon. Agrofor Syst 55:81–87

    Article  Google Scholar 

  • Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NPR (2005) A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. Agric Syst 84:195–225

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank field assistants from several cocoa cooperatives and associations of Central America for the support they provided: COCABO (Panamá), APPTA and ACOMUITA (Costa Rica), CACAONICA (Nicaragua), APROCACAHO (Honduras), and Instituto agroecológico bilingüe Fray Domingo de Vico (Guatemala). Juan Carlos Moran Morillo, from the University of Nariño, Colombia, helped prepare tables and bibliography. Financial support was provided by MAP Noruega-CATIE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Cerda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerda, R., Deheuvels, O., Calvache, D. et al. Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforest Syst 88, 957–981 (2014). https://doi.org/10.1007/s10457-014-9691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-014-9691-8

Keywords

Navigation