Skip to main content
Log in

Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Children with hypoplastic lung disease associated with congenital diaphragmatic hernia (CDH) continue to suffer significant morbidity and mortality secondary to progressive pulmonary disease. Current management of CDH is primarily supportive and mortality rates of the most severely affected children have remained unchanged in the last few decades. Previous work in our lab has demonstrated the importance of vascular endothelial growth factor (VEGF)-mediated angiogenesis in accelerating compensatory lung growth. In this study, we evaluated the potential for Roxadustat (FG-4592), a prolyl hydroxylase inhibitor known to increase endogenous VEGF, in accelerating compensatory lung growth. Treatment with Roxadustat increased lung volume, total lung capacity, alveolarization, and exercise tolerance compared to controls following left pneumonectomy. However, this effect was likely modulated not only by increased VEGF, but rather also by decreased pigment epithelium-derived factor (PEDF), an anti-angiogenic factor. Furthermore, this mechanism of action may be specific to Roxadustat. Vadadustat (AKB-6548), a structurally similar prolyl hydroxylase inhibitor, did not demonstrate accelerated compensatory lung growth or decreased PEDF expression following left pneumonectomy. Given that Roxadustat is already in Phase III clinical studies for the treatment of chronic kidney disease-associated anemia with minimal side effects, its use for the treatment of pulmonary hypoplasia could potentially proceed expeditiously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

CLG:

Compensatory lung growth

DMSO:

Dimethyl sulfoxide

H&E:

Hematoxylin and eosin

HIF:

Hypoxia inducible factor

IPF:

Idiopathic pulmonary fibrosis

PBS:

Phosphate-buffered saline

PBST:

Phosphate-buffered saline with 0.5% Triton-X

PEDF:

Pigment-epithelial derived factor

PHD:

Prolyl hydroxylase

POD:

Post-operative day

P-VEGFR2:

Phosphorylated-vascular endothelial growth factor receptor 2

TBST:

Tris-buffered saline and Tween 20

TLC:

Total lung capacity

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. https://doi.org/10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  2. Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211(4):415–427. https://doi.org/10.1111/j.1469-7580.2007.00790.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crivellato E (2011) The role of angiogenic growth factors in organogenesis. Int J Dev Biol 55(4–5):365–375. https://doi.org/10.1387/ijdb.103214ec

    Article  CAS  PubMed  Google Scholar 

  4. Woik N, Kroll J (2015) Regulation of lung development and regeneration by the vascular system. Cell Mol Life Sci 72(14):2709–2718. https://doi.org/10.1007/s00018-015-1907-1

    Article  CAS  PubMed  Google Scholar 

  5. Chang R, Andreoli S, Ng YS, Truong T, Smith SR, Wilson J, D'Amore PA (2004) VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 39(6):825–828

    Article  Google Scholar 

  6. van der Horst IW, Rajatapiti P, van der Voorn P, van Nederveen FH, Tibboel D, Rottier R, Reiss I, de Krijger RR (2011) Expression of hypoxia-inducible factors, regulators, and target genes in congenital diaphragmatic hernia patients. Pediatr Dev Pathol 14(5):384–390. https://doi.org/10.2350/09-09-0705-OA.1

    Article  CAS  PubMed  Google Scholar 

  7. Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164(10 Pt 1):1981–1987. https://doi.org/10.1164/ajrccm.164.10.2012036

    Article  CAS  PubMed  Google Scholar 

  8. Abman SH (2010) Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv Exp Med Biol 661:323–335. https://doi.org/10.1007/978-1-60761-500-2_21

    Article  CAS  PubMed  Google Scholar 

  9. Hsia CC (1985) (2004) Signals and mechanisms of compensatory lung growth. J Appl Physiol 97(5):1992–1998. https://doi.org/10.1152/japplphysiol.00530.2004

    Article  Google Scholar 

  10. Dao DT, Nandivada P, Vuong JT, Anez-Bustillos L, Pan A, Kishikawa H, Mitchell PD, Baker MA, Fell GL, Martin T, Puder M (2018) Vascular endothelial growth factor accelerates compensatory lung growth by increasing the alveolar units. Pediatr Res 83(6):1182–1189. https://doi.org/10.1038/pr.2018.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dao DT, Vuong JT, Anez-Bustillos L, Pan A, Mitchell PD, Fell GL, Baker MA, Bielenberg DR, Puder M (2018) Intranasal delivery of VEGF enhances compensatory lung growth in mice. PLoS ONE 13(6):e0198700. https://doi.org/10.1371/journal.pone.0198700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sakurai MK, Lee S, Arsenault DA, Nose V, Wilson JM, Heymach JV, Puder M (2007) Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy. Am J Physiol Lung Cell Mol Physiol 292(3):L742–747. https://doi.org/10.1152/ajplung.00064.2006

    Article  CAS  PubMed  Google Scholar 

  13. Horowitz JR, Rivard A, van der Zee R, Hariawala M, Sheriff DD, Esakof DD, Chaudhry GM, Symes JF, Isner JM (1997) Vascular endothelial growth factor/vascular permeability factor produces nitric oxide-dependent hypotension. Evidence for a maintenance role in quiescent adult endothelium. Arterioscler Thromb Vasc Biol 17(11):2793–2800. https://doi.org/10.1161/01.atv.17.11.2793

    Article  CAS  PubMed  Google Scholar 

  14. Dao DT, Anez-Bustillos L, Pan A, O'Loughlin AA, Mitchell PD, Fell GL, Baker MA, Cho BS, Nandivada P, Nedder AP, Smithers CJ, Chen N, Comeau R, Holmes K, Kalled S, Norton A, Zhang B, Puder M (2018) Vascular endothelial growth factor enhances compensatory lung growth in piglets. Surgery 164(6):1279–1286. https://doi.org/10.1016/j.surg.2018.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhu Y, Wang Y, Jia Y, Xu J, Chai Y (2019) Roxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen 27(4):324–334. https://doi.org/10.1111/wrr.12708

    Article  PubMed  Google Scholar 

  16. Chen N, Hao C, Liu BC, Lin H, Wang C, Xing C, Liang X, Jiang G, Liu Z, Li X, Zuo L, Luo L, Wang J, Zhao MH, Liu Z, Cai GY, Hao L, Leong R, Wang C, Liu C, Neff T, Szczech L, Yu KP (2019) Roxadustat treatment for anemia in patients undergoing long-term dialysis. N Engl J Med. https://doi.org/10.1056/NEJMoa1901713

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, Chen J, Luo L, Zuo L, Liao Y, Liu BC, Leong R, Wang C, Liu C, Neff T, Szczech L, Yu KP (2019) Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. https://doi.org/10.1056/NEJMoa1813599

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH (2016) Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int 90(5):1115–1122. https://doi.org/10.1016/j.kint.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai MK, Greene AK, Wilson J, Fauza D, Puder M (2005) Pneumonectomy in the mouse: technique and perioperative management. J Invest Surg 18(4):201–205. https://doi.org/10.1080/08941930591004485

    Article  PubMed  Google Scholar 

  20. Scherle W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26(1):57–60

    CAS  PubMed  Google Scholar 

  21. Muhlfeld C, Ochs M (2013) Quantitative microscopy of the lung: a problem-based approach. Part 2: stereological parameters and study designs in various diseases of the respiratory tract. Am J Physiol Lung Cell Mol Physiol 305(3):205–221. https://doi.org/10.1152/ajplung.00427.2012

    Article  CAS  Google Scholar 

  22. Ochs M, Muhlfeld C (2013) Quantitative microscopy of the lung: a problem-based approach Part 1: basic principles of lung stereology. Am J Physiol Lung Cell Mol Physiol 305(1):L15–22. https://doi.org/10.1152/ajplung.00429.2012

    Article  CAS  PubMed  Google Scholar 

  23. Weibel ER, Gomez DM (1962) A principle for counting tissue structures on random sections. J Appl Physiol 17:343–348. https://doi.org/10.1152/jappl.1962.17.2.343

    Article  CAS  PubMed  Google Scholar 

  24. Mohamed AA, Tan SH, Mikhalkevich N, Ponniah S, Vasioukhin V, Bieberich CJ, Sesterhenn IA, Dobi A, Srivastava S, Sreenath TL (2010) Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J Cancer 1:197–208

    Article  CAS  Google Scholar 

  25. Zhang Y, Ma A, Wang L, Zhao B (2015) Nornicotine and nicotine induced neovascularization via increased VEGF/PEDF ratio. Ophthalmic Res 55(1):1–9. https://doi.org/10.1159/000440847

    Article  CAS  PubMed  Google Scholar 

  26. Fan W, Crawford R, Xiao Y (2011) The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization. Differentiation 81(3):181–191. https://doi.org/10.1016/j.diff.2010.12.003

    Article  CAS  PubMed  Google Scholar 

  27. Beuck S, Schanzer W, Thevis M (2012) Hypoxia-inducible factor stabilizers and other small-molecule erythropoiesis-stimulating agents in current and preventive doping analysis. Drug Test Anal 4(11):830–845. https://doi.org/10.1002/dta.390

    Article  CAS  PubMed  Google Scholar 

  28. Beck J, Henschel C, Chou J, Lin A, Del Balzo U (2017) Evaluation of the carcinogenic potential of roxadustat (FG-4592), a small molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase in CD-1 mice and sprague dawley rats. Int J Toxicol 36(6):427–439. https://doi.org/10.1177/1091581817737232

    Article  CAS  PubMed  Google Scholar 

  29. Watson EC, Grant ZL, Coultas L (2017) Endothelial cell apoptosis in angiogenesis and vessel regression. Cell Mol Life Sci 74(24):4387–4403. https://doi.org/10.1007/s00018-017-2577-y

    Article  CAS  PubMed  Google Scholar 

  30. Watson EC, Koenig MN, Grant ZL, Whitehead L, Trounson E, Dewson G, Coultas L (2016) Apoptosis regulates endothelial cell number and capillary vessel diameter but not vessel regression during retinal angiogenesis. Development 143(16):2973–2982. https://doi.org/10.1242/dev.137513

    Article  CAS  PubMed  Google Scholar 

  31. Zhang SX, Wang JJ, Gao G, Parke K, Ma JX (2006) Pigment epithelium-derived factor downregulates vascular endothelial growth factor (VEGF) expression and inhibits VEGF-VEGF receptor 2 binding in diabetic retinopathy. J Mol Endocrinol 37(1):1–12. https://doi.org/10.1677/jme.1.02008

    Article  CAS  PubMed  Google Scholar 

  32. Chetty A, Bennett M, Dang L, Nakamura D, Cao GJ, Mujahid S, Volpe M, Herman I, Becerra SP, Nielsen HC (2015) Pigment epithelium-derived factor mediates impaired lung vascular development in neonatal hyperoxia. Am J Respir Cell Mol Biol 52(3):295–303. https://doi.org/10.1165/rcmb.2013-0229OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, Schwarz MI, Cool CD, Worthen GS (2004) Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 170(3):242–251. https://doi.org/10.1164/rccm.200308-1151OC

    Article  PubMed  Google Scholar 

  34. Haase VH, Chertow GM, Block GA, Pergola PE, deGoma EM, Khawaja Z, Sharma A, Maroni BJ, McCullough PA (2019) Effects of vadadustat on hemoglobin concentrations in patients receiving hemodialysis previously treated with erythropoiesis-stimulating agents. Nephrol Dial Transpl 34(1):90–99. https://doi.org/10.1093/ndt/gfy055

    Article  CAS  Google Scholar 

  35. Ariazi JL, Duffy KJ, Adams DF, Fitch DM, Luo L, Pappalardi M, Biju M, DiFilippo EH, Shaw T, Wiggall K, Erickson-Miller C (2017) Discovery and preclinical characterization of GSK1278863 (Daprodustat), a small molecule hypoxia inducible factor-prolyl hydroxylase inhibitor for anemia. J Pharmacol Exp Ther 363(3):336–347. https://doi.org/10.1124/jpet.117.242503

    Article  CAS  PubMed  Google Scholar 

  36. Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ (2017) Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci 8(11):7651–7668. https://doi.org/10.1039/c7sc02103h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin ER, Smith MT, Maroni BJ, Zuraw QC, deGoma EM (2017) Clinical trial of vadadustat in patients with anemia secondary to stage 3 or 4 chronic kidney disease. Am J Nephrol 45(5):380–388. https://doi.org/10.1159/000464476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Donahoe PK, Longoni M, High FA (2016) Polygenic causes of congenital diaphragmatic hernia produce common lung pathologies. Am J Pathol 186(10):2532–2543. https://doi.org/10.1016/j.ajpath.2016.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wynn J, Yu L, Chung WK (2014) Genetic causes of congenital diaphragmatic hernia. Semin Fetal Neonatal Med 19(6):324–330. https://doi.org/10.1016/j.siny.2014.09.003

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research funding is provided by the Boston Children’s Hospital Surgical Foundation and the Vascular Biology Program at Boston Children’s Hospital, the National Institutes of Health Grants 5T32HL007734 (DTD), the Corkin and Maher Family Fund (PDM), and the Neurodevelopmental Behavior Core of Boston Children’s Hospital (CHB IDDRC – 1U54HD090255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Puder.

Ethics declarations

Conflict of interest

The authors MP and DTD have submitted a patent for the use of Roxadustat in promoting lung growth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, V.H., Yu, L.J., Dao, D.T. et al. Roxadustat (FG-4592) accelerates pulmonary growth, development, and function in a compensatory lung growth model. Angiogenesis 23, 637–649 (2020). https://doi.org/10.1007/s10456-020-09735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09735-9

Keywords

Navigation