Skip to main content
Log in

Anti-angiogenic potential of small molecular inhibitors of cyclin dependent kinases in vitro

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Small molecular kinase inhibitors are promising novel drugs. Initially, they were designed for the highest possible specificity. Recently, this concept has been challenged by multikinase inhibitors, which are clinically more potent. This change of paradigm calls for re-examination of already known compounds in different functional contexts. We have compared 6 reported structurally different inhibitors of cyclin-dependent kinases (Cdks) regarding their functional effects on endothelial cells (proliferation, cell cycle, apoptosis, migration, tube formation), as well as their actions on some kinases (AKT, p38, ERK1/2, c-src, GSK3β). Only some of these compounds had anti-angiogenic effects in concentrations up to 10 μM (aminopurvalanol, indirubin-3′-monoxime, and alsterpaullone), depending on their kinase profile. Interestingly, the impact of the compounds on Cdks seemed to be of minor importance, as compared to other mechanisms. Aminopurvalanol, indirubin-3′-monoxime, and alsterpaullone might turn out as interesting scaffolds for the development of novel anti-angiogenic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

  3. Quesada AR, Medina MA, Alba E (2007) Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29:1159–1168

    Article  CAS  PubMed  Google Scholar 

  4. Zimmermann GR, Lehar J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12:34–42

    Article  CAS  PubMed  Google Scholar 

  5. Bostrom J, Yu SF, Kan D et al (2009) Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323:1610–1614

    Article  CAS  PubMed  Google Scholar 

  6. Vesely J, Havlicek L, Strnad M et al (1994) Inhibition of cyclin-dependent kinases by purine analogues. Eur J Biochem 224:771–786

    Article  CAS  PubMed  Google Scholar 

  7. Knockaert M, Greengard P, Meijer L (2002) Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 23:417–425

    Article  CAS  PubMed  Google Scholar 

  8. Bain J, McLauchlan H, Elliott M et al (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  CAS  PubMed  Google Scholar 

  9. Bain J, Plater L, Elliott M et al (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315

    Article  CAS  PubMed  Google Scholar 

  10. Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  CAS  PubMed  Google Scholar 

  11. Meijer L, Raymond E (2003) Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 36:417–425

    Article  CAS  PubMed  Google Scholar 

  12. Marko D, Schatzle S, Friedel A et al (2001) Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br J Cancer 84:283–289

    Article  CAS  PubMed  Google Scholar 

  13. Leost M, Schultz C, Link A et al (2000) Paullones are potent inhibitors of glycogen synthase kinase-3beta and cyclin-dependent kinase 5/p25. Eur J Biochem 267:5983–5994

    Article  CAS  PubMed  Google Scholar 

  14. Mettey Y, Gompel M, Thomas V et al (2003) Aloisines, a new family of CDK/GSK-3 inhibitors. SAR study, crystal structure in complex with CDK2, enzyme selectivity, and cellular effects. J Med Chem 46:222–236

    Article  CAS  PubMed  Google Scholar 

  15. Bach S, Knockaert M, Reinhardt J et al (2005) Roscovitine targets, protein kinases and pyridoxal kinase. J Biol Chem 280:31208–31219

    Article  CAS  PubMed  Google Scholar 

  16. Knockaert M, Gray N, Damiens E et al (2000) Intracellular targets of cyclin-dependent kinase inhibitors: identification by affinity chromatography using immobilised inhibitors. Chem Biol 7:411–422

    Article  CAS  PubMed  Google Scholar 

  17. Hoessel R, Leclerc S, Endicott JA et al (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol 1:60–67

    Article  CAS  PubMed  Google Scholar 

  18. Ades EW, Candal FJ, Swerlick RA et al (1992) HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J Invest Dermatol 99:683–690

    Article  CAS  PubMed  Google Scholar 

  19. Rothmeier AS, Ischenko I, Joore J et al (2008) Investigation of the marine compound spongistatin 1 links the inhibition of PKC{alpha} translocation to nonmitotic effects of tubulin antagonism in angiogenesis. FASEB J 23:1127–1137

    Article  PubMed  Google Scholar 

  20. Blumenthal SB, Kiemer AK, Tiegs G et al (2005) Metalloporphyrins inactivate caspase-3 and -8. FASEB J 19:1272–1279

    Article  CAS  PubMed  Google Scholar 

  21. Meijer L, Skaltsounis AL, Magiatis P et al (2003) GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem Biol 10:1255–1266

    Article  CAS  PubMed  Google Scholar 

  22. Knockaert M, Lenormand P, Gray N et al (2002) p42/p44 MAPKs are intracellular targets of the CDK inhibitor purvalanol. Oncogene 21:6413–6424

    Article  CAS  PubMed  Google Scholar 

  23. Blagden S, de BJ (2005) Drugging cell cycle kinases in cancer therapy. Curr Drug Targets 6:325–335

    Article  CAS  PubMed  Google Scholar 

  24. Tran TC, Sneed B, Haider J et al (2007) Automated, quantitative screening assay for antiangiogenic compounds using transgenic zebrafish. Cancer Res 67:11386–11392

    Article  CAS  PubMed  Google Scholar 

  25. Meijer L, Borgne A, Mulner O et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Article  CAS  PubMed  Google Scholar 

  26. Nam S, Buettner R, Turkson J et al (2005) Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102:5998–6003

    Article  CAS  PubMed  Google Scholar 

  27. Kim HS, Skurk C, Thomas SR et al (2002) Regulation of angiogenesis by glycogen synthase kinase-3beta. J Biol Chem 277:41888–41896

    Article  CAS  PubMed  Google Scholar 

  28. Zachary I (2003) VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171–1177

    Article  CAS  PubMed  Google Scholar 

  29. Orr AW, Murphy-Ullrich JE (2004) Regulation of endothelial cell function BY FAK and PYK2. Front Biosci 9:1254–1266

    Article  CAS  PubMed  Google Scholar 

  30. Knockaert M, Wieking K, Schmitt S et al (2002) Intracellular targets of Paullones. Identification following affinity purification on immobilized inhibitor. J Biol Chem 277:25493–25501

    Article  CAS  PubMed  Google Scholar 

  31. Newcomb EW (2004) Flavopiridol: pleiotropic biological effects enhance its anti-cancer activity. Anticancer Drugs 15:411–419

    Article  CAS  PubMed  Google Scholar 

  32. Jain RK, Duda DG, Clark JW et al (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. L. Meijer (Roscoff, France) for supplying us with the Cdk compounds.

The authors gratefully acknowledge the expert technical assistance by C. Niemann, and J. Peliskova. This work was supported by a grant of the EC (FP6-2002-Life Sciences & Health, PRO-KINASE Research Project, Project no. LSHB-CT-2004-503467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Zahler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahler, S., Liebl, J., Fürst, R. et al. Anti-angiogenic potential of small molecular inhibitors of cyclin dependent kinases in vitro. Angiogenesis 13, 239–249 (2010). https://doi.org/10.1007/s10456-010-9181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-010-9181-1

Keywords

Navigation