Skip to main content

Advertisement

Log in

Indoor exposure to airborne bacteria and fungi in sensitive wards of an academic pediatric hospital

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Airborne bacteria and fungi in hospital environments are of great concern due to their potential role as a source of nosocomial infections. The aim of this study was to evaluate concentration and diversity of airborne bacteria and fungi in relation to particle mass concentration in sensitive wards of a pediatric hospital. The study was performed in the cardiac care unit (CCU), the neonatal intensive care unit (NICU), the cancer blood ward (BW), the ENT (ear, nose, throat) operation room (OT1) and the eye operation room (OT2). The air samples were collected by impaction using the single-stage Andersen sampler. The flow rate and sampling time of the pump were adjusted to 28.3 l/min for 5 min. The mean concentration of indoor airborne fungi and bacteria ranged from 0–63 to 19–356 CFU/m3, respectively. OT2 and CCU wards were the most contaminated wards for airborne bacteria and fungi, respectively (243 ± 77 vs. 30 ± 7 CFU/m3). The airborne Gram-positive cocci (Staphylococcus and Micrococcus) were the most detected bacterial genera (75%) in all indoor air samples, and the most prevalent genera in indoor environment were Cladosporium spp. (19%) followed by Penicillium spp. (16%), Aspergillus spp. (16%) and Paecilomyces spp. (10%). Results showed that the outdoor airborne bacteria and PM concentration at different sizes were significantly higher than indoors, suggesting that the indoor airborne particle may have originated from the outdoor air. There were significant positive relationships between indoor airborne fungi concentrations with indoor PM2.5 and PM10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, F., & Samaei, M. R. (2018). The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital. Environmental Science and Pollution Research,26(17), 16868–16876.

    Article  Google Scholar 

  • Armour, A. L., Patrick, M. E., Reddy, Z., Sibanda, W., Naidoo, L., & Spicer, K. B. (2018). Healthcare-associated infection in the Grey’s Hospital paediatric intensive care unit: does an infection control programme work? Southern African Journal of Infectious Diseases. https://doi.org/10.1080/23120053.2018.1548677.

    Article  Google Scholar 

  • Awosika, S. A., Olajubu, F. A., & Amusa, N. A. (2012). Microbiological assessment of indoor air of a teaching hospital in Nigeria. Asian Pacific journal of tropical biomedicine,2(6), 465.

    Article  CAS  Google Scholar 

  • Cabo Verde, S., Almeida, S. M., Matos, J., Guerreiro, D., Meneses, M., Faria, T., et al. (2015). Microbiological assessment of indoor air quality at different hospital sites. Research in Microbiology,166(7), 557–563. https://doi.org/10.1016/j.resmic.2015.03.004.

    Article  Google Scholar 

  • Chaivisit, P., Fontana, A., Galindo, S., Strub, C., Choosong, T., Kantachote, D., & Suksaroj, T. T. (2018). Airborne bacteria and fungi distribution characteristics in natural ventilation system of a university hospital in Thailand. Environment Asia, 11(2), 53–66. https://doi.org/10.14456/ea.2018.22.

    Article  Google Scholar 

  • Chen, Y.-P., Cui, Y., & Dong, J.-G. (2010). Variation of airborne bacteria and fungi at Emperor Qin’s Terra-Cotta Museum, Xi’an, China, during the “Oct. 1” gold week period of 2006. Environmental Science and Pollution Research,17(2), 478–485.

    Article  Google Scholar 

  • Cristina, M. L., Spagnolo, A. M., Sartini, M., Panatto, D., Gasparini, R., Orlando, P., et al. (2012). Can particulate air sampling predict microbial load in operating theatres for arthroplasty? PLoS ONE,7(12), e52809.

    Article  CAS  Google Scholar 

  • Dehghani, M., Sorooshian, A., Nazmara, S., Baghani, A. N., & Delikhoon, M. (2018). Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicology and Environmental Safety,164, 277–282.

    Article  CAS  Google Scholar 

  • Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., et al. (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B: Chemical and Physical Meteorology,64(1), 15598.

    Article  Google Scholar 

  • Diapouli, E., Eleftheriadis, K., Karanasiou, A. A., Vratolis, S., Hermansen, O., Colbeck, I., et al. (2011). Indoor and outdoor particle number and mass concentrations in Athens. Sources, sinks and variability of aerosol parameters. Aerosol and Air Quality Research,11(6), 632–642.

    Article  CAS  Google Scholar 

  • Ekhaise, F. O., Isitor, E. E., Idehen, O., & Emoghene, A. O. (2010). Airborne microflora in the atmosphere of an hospital environment of University of Benin Teaching Hospital (UBTH), Benin City, Nigeria. World Journal of Agricultural Science,6(2), 166–170.

    Google Scholar 

  • Faridi, S., Hassanvand, M. S., Naddafi, K., Yunesian, M., Nabizadeh, R., Sowlat, M. H., et al. (2015). Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environmental Science and Pollution Research,22(11), 8190–8200.

    Article  CAS  Google Scholar 

  • Hoseinzadeh, E., Samarghandie, M. R., Ghiasian, S. A., Alikhani, M. Y., & Roshanaie, G. (2013). Evaluation of bioaerosols in five educational hospitals wards air in Hamedan, During 2011–2012. Jundishapur Journal of Microbiology, 6(6).e10704. https://doi.org/10.5812/jjm.10704.

    Article  Google Scholar 

  • Huang, H.-L., Lee, M.-K., & Shih, H.-W. (2018). Assessment of indoor bioaerosols in public spaces by real-time measured airborne particles. Aerosol and Air Quality Research,17(9), 2276–2288.

    Article  Google Scholar 

  • Khan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine,7(5), 478–482.

    Article  Google Scholar 

  • Knowlton, S. D., Boles, C. L., Perencevich, E. N., Diekema, D. J., & Nonnenmann, M. W. (2018). Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrobial Resistance & Infection Control,7(1), 16.

    Article  Google Scholar 

  • Landrin, A., Bissery, A., & Kac, G. (2005). Monitoring air sampling in operating theatres: can particle counting replace microbiological sampling? Journal of Hospital Infection,61(1), 27–29. https://doi.org/10.1016/j.jhin.2005.03.002.

    Article  CAS  Google Scholar 

  • León, M. G. F.-D., Duarte-Escalante, E., del Calderón-Ezquerro, M. C., del Jiménez-Martínez, M. C., Acosta-Altamirano, G., Moreno-Eutimio, M. A., et al. (2016). Diversity and characterization of airborne bacteria at two health institutions. Aerobiologia,32(2), 187–198. https://doi.org/10.1007/s10453-015-9389-z.

    Article  Google Scholar 

  • Licina, D., Bhangar, S., Brooks, B., Baker, R., Firek, B., Tang, X., et al. (2016). Concentrations and sources of airborne particles in a neonatal intensive care unit. PLoS ONE,11(5), e0154991.

    Article  Google Scholar 

  • Macher, J. M. (1989). Positive-hole correction of multiple-jet impactors for collecting viable microorganisms. American Industrial Hygiene Association Journal,50(11), 561–568.

    Article  CAS  Google Scholar 

  • Mirhoseini, S. H., Nikaeen, M., Khanahmad, H., Hatamzadeh, M., & Hassanzadeh, A. (2015). Monitoring of airborne bacteria and aerosols in different wards of hospitals-Particle counting usefulness in investigation of airborne bacteria. Annals of Agricultural and Environmental Medicine, 22(4), 670–673.

    Article  CAS  Google Scholar 

  • Mirhoseini, S. H., Nikaeen, M., Satoh, K., & Makimura, K. (2016a). Assessment of airborne particles in indoor environments: Applicability of particle counting for prediction of bioaerosol concentrations. Aerosol and Air Quality Research,16, 1903–1910.

    Article  CAS  Google Scholar 

  • Mirhoseini, S. H., Nikaeen, M., Shamsizadeh, Z., & Khanahmad, H. (2016b). Hospital air: A potential route for transmission of infections caused by β-lactam–resistant bacteria. American Journal of Infection Control,44(8), 898–904.

    Article  Google Scholar 

  • Mosayebi, M., Eslamirad, Z., Hajihossein, R., Ghorbanzadeh, B., Shahverdi, M., & Didehdar, M. (2017). Evaluating of fungal contamination in hospital wet cooling systems in Markazi province, Central Iran. Journal de mycologie medicale,27(3), 334–338.

    Article  CAS  Google Scholar 

  • Nejad, S. B., Allegranzi, B., Syed, S. B., Ellis, B., & Pittet, D. (2011). Health-care-associated infection in Africa: A systematic review. Bulletin of the World Health Organization,89, 757–765.

    Article  Google Scholar 

  • Ortiz, G., Yagüe, G., Segovia, M., & Catalán, V. (2009). A study of air microbe levels in different areas of a hospital. Current Microbiology,59(1), 53.

    Article  CAS  Google Scholar 

  • Osman, M. E., Ibrahim, H. Y., Yousef, F. A., Elnasr, A. A., Saeed, Y., & Hameed, A. A. (2018). A study on microbiological contamination on air quality in hospitals in Egypt. Indoor and Built Environment,27(7), 953–968.

    Article  Google Scholar 

  • Pakshir, K., Shekarkhar, G., Mostagnie, S., Sabayan, B., & Vaghefikia, A. (2015). Monitoring of airborne fungi in two general hospitals in Shiraz, Southern Iran. Iranian Journal of Medical Sciences,32(4), 240–244.

    Google Scholar 

  • Prussin, A. J., Garcia, E. B., & Marr, L. C. (2015). Total concentrations of virus and bacteria in indoor and outdoor air. Environmental Science & Technology Letters,2(4), 84–88. https://doi.org/10.1021/acs.estlett.5b00050.

    Article  CAS  Google Scholar 

  • Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome,3(1), 78. https://doi.org/10.1186/s40168-015-0144-z.

    Article  Google Scholar 

  • Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W., & Peccia, J. (2012). Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom. Indoor Air,22(4), 339–351.

    Article  CAS  Google Scholar 

  • Rostami, N., Alidadi, H., Zarrinfar, H., & Salehi, P. (2016). Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center. Italian journal of medicine,11(1), 52–56.

    Google Scholar 

  • Shaw, L. F., Chen, I. H., Chen, C. S., Wu, H. H., Lai, L. S., Chen, Y. Y., et al. (2018). Factors influencing microbial colonies in the air of operating rooms. BMC Infectious Diseases,18(1), 4.

    Article  Google Scholar 

  • Tang, C.-S., & Wan, G.-H. (2013). Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan. PLoS ONE,8(4), e61093.

    Article  CAS  Google Scholar 

  • Wan, G.-H., Chung, F.-F., & Tang, C.-S. (2011). Long-term surveillance of air quality in medical center operating rooms. American Journal of Infection Control,39(4), 302–308.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the vice-chancellery for research of Arak University of Medical Sciences (Grant No. 174). The authors wish to extend their thanks to the hospital personnel for their assistance during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Hamed Mirhoseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirhoseini, S.H., Didehdar, M., Akbari, M. et al. Indoor exposure to airborne bacteria and fungi in sensitive wards of an academic pediatric hospital. Aerobiologia 36, 225–232 (2020). https://doi.org/10.1007/s10453-020-09624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-020-09624-0

Keywords

Navigation