Skip to main content

Advertisement

Log in

Introducing DNA-based methods to compare fungal microbiota and concentrations in indoor, outdoor, and personal air

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Inhalation of airborne fungi is known to cause respiratory illnesses such as allergies. However, the association between exposure and health outcomes remains largely unclear, in part due to lack of knowledge about fungal exposure in daily life. This study aims to introduce DNA-based methods such as high-throughput sequencing (HTS) and quantitative polymerase chain reaction (qPCR) to compare fungal microbiota and concentrations in indoor, outdoor, and personal air. Five sets of concurrent indoor, outdoor, and personal air samples were collected, each with duration of 4 days. Sequencing analysis revealed greater species richness in personal than indoor air for four out of the five sets, indicating that people are exposed to outdoor species that are not in indoor air. The personal–indoor (P/I) and personal–outdoor (P/O) ratios of total fungi were 1.2 and 0.15, respectively, suggesting that personal exposure to total fungi is better represented by indoor than outdoor concentrations. However, the ratios were taxon dependent, highlighting the complexity of generalizing personal exposure to the diverse kingdom Fungi. These results demonstrate that the HTS/qPCR method is useful for assessing taxon-specific fungal exposure, which might be difficult to achieve effectively using conventional, non-DNA-based techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, R. I., Miletto, M., Taylor, J. W., & Bruns, T. D. (2013). Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME Journal, 7, 1262–1273.

    Article  CAS  Google Scholar 

  • Adhikari, A., Reponen, T., Lee, S. A., & Grinshpun, S. A. (2004). Assessment of human exposure to airborne fungi in agricultural confinements: Personal inhalable sampling versus stationary sampling. Annals of Agricultural and Environmental Medicine, 11, 269–277.

    Google Scholar 

  • Allen, J. G., McClean, M. D., Stapleton, H. M., Nelson, J. W., & Webster, T. F. (2007). Personal exposure to polybrominated diphenyl ethers (PBDEs) in residential indoor air. Environmental Science and Technology, 41, 4574–4579.

    Article  CAS  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  • Amend, A. S., Seifert, K. A., Samson, R., & Bruns, T. D. (2010). Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 107, 13748–13753.

    Article  CAS  Google Scholar 

  • An, C., & Yamamoto, N. (2016). Fungal compositions and diversities on indoor surfaces with visible mold growths in residential buildings in the Seoul Capital Area of South Korea. Indoor Air, 26, 714–723.

    Article  CAS  Google Scholar 

  • Andersen, A. A. (1958). New sampler for the collection, sizing, and enumeration of viable airborne particles. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Blankenberg, D., Von Kuster, G., Coraor, N., Ananda, G., Lazarus, R., Mangan, M., et al. (2010). Galaxy: A web-based genome analysis tool for experimentalists. Current Protocols in Molecular Biology, 19(10), 1–21.

    Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.

    Article  CAS  Google Scholar 

  • Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R. H., Uroz, S., et al. (2009). 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 184, 449–456.

    Article  Google Scholar 

  • Burge, H. A. (2002). An update on pollen and fungal spore aerobiology. Journal of Allergy and Clinical Immunology, 110, 544–552.

    Article  Google Scholar 

  • Caporaso, J., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F., Costello, E., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336.

    Article  CAS  Google Scholar 

  • Cole, G. T., & Samson, R. A. (1984). The conidia. In Y. Al-Doory & J. F. Domson (Eds.), Mould allergy (pp. 66–104). Philadelphia: Lea & Fibiger.

    Google Scholar 

  • Crous, P. W., Braun, U., & Groenewald, J. Z. (2007). Mycosphaerella is polyphyletic. Studies in Mycology, 58, 1–32.

    Article  CAS  Google Scholar 

  • Cruz-Perez, P., Buttner, M. P., & Stetzenbach, L. D. (2001). Specific detection of Stachybotrys chartarum in pure culture using quantitative polymerase chain reaction. Molecular and Cellular Probes, 15, 129–138.

    Article  CAS  Google Scholar 

  • Dannemiller, K., Lang-Yona, N., Yamamoto, N., Rudich, Y., & Peccia, J. (2014a). Combining real-time PCR and next-generation DNA sequencing to provide quantitative comparisons of fungal aerosol populations. Atmospheric Environment, 84, 113–121.

    Article  CAS  Google Scholar 

  • Dannemiller, K., Reeves, D., Bibby, K., Yamamoto, N., & Peccia, J. (2014b). Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). Journal of Basic Microbiology, 54, 315–321.

    Article  CAS  Google Scholar 

  • Delfino, R. J., Zeiger, R. S., Seltzer, J. M., Street, D. H., Matteucci, R. M., Anderson, P. R., et al. (1997). The effect of outdoor fungal spore concentrations on daily asthma severity. Environmental Health Perspectives, 105, 622–635.

    Article  CAS  Google Scholar 

  • Denning, D. W., O’Driscoll, B. R., Hogaboam, C. M., Bowyer, P., & Niven, R. M. (2006). The link between fungi and severe asthma: A summary of the evidence. European Respiratory Journal, 27, 615–626.

    Article  CAS  Google Scholar 

  • Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194–2200.

    Article  CAS  Google Scholar 

  • Eduard, W., Douwes, J., Mehl, R., Heederik, D., & Melbostad, E. (2001). Short term exposure to airborne microbial agents during farm work: Exposure-response relations with eye and respiratory symptoms. Occupational and Environmental Medicine, 58, 113–118.

    Article  CAS  Google Scholar 

  • Elbert, W., Taylor, P. E., Andreae, M. O., & Pöschl, U. (2007). Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmospheric Chemistry and Physics, 7, 4569–4588.

    Article  CAS  Google Scholar 

  • Fröhlich-Nowoisky, J., Pickersgill, D. A., Després, V. R., & Pöschl, U. (2009). High diversity of fungi in air particulate matter. Proceedings of the National Academy of Sciences of the United States of America, 106, 12814–12819.

    Article  Google Scholar 

  • Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for Basidiomycetes: Application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118.

    Article  CAS  Google Scholar 

  • George, B. J., Whitaker, D. A., Gilliam, R. C., Swall, J. L., & Williams, R. W. (2010). Relationship between PM2.5 collected at residential outdoor locations and a central site. Journal of the Air and Waste Management Association, 60, 1094–1104.

    Article  Google Scholar 

  • Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., et al. (2005). Galaxy: A platform for interactive large-scale genome analysis. Genome Research, 15, 1451–1455.

    Article  CAS  Google Scholar 

  • Goecks, J., Nekrutenko, A., Taylor, J., & Team, T. G. (2010). Galaxy: A comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biology, 11, R86.

    Article  Google Scholar 

  • Guarro, J., & Gené, J. (1992). Fusarium infections. Criteria for the identification of the responsible species. Mycoses, 35, 109–114.

    Article  CAS  Google Scholar 

  • Haas, D., Habib, J., Luxner, J., Galler, H., Zarfel, G., Schlacher, R., et al. (2014). Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria. Atmospheric Environment, 98, 640–647.

    Article  CAS  Google Scholar 

  • Halonen, M., Stern, D. A., Wright, A. L., Taussig, L. M., & Martinez, F. D. (1997). Alternaria as a major allergen for asthma in children raised in a desert environment. American Journal of Respiratory and Critical Care Medicine, 155, 1356–1361.

    Article  CAS  Google Scholar 

  • Halstensen, A. (2008). Species-specific fungal DNA in airborne dust as surrogate for occupational mycotoxin exposure? International Journal of Molecular Sciences, 9, 2543–2558.

    Article  CAS  Google Scholar 

  • Hamada, N., & Abe, N. (2009). Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience, 50, 421–429.

    Article  Google Scholar 

  • Hawksworth, D. L. (2001). The magnitude of fungal diversity: The 1.5 million species estimate revisited. Mycological Research, 105, 1422–1432.

    Article  Google Scholar 

  • Heald, C. L., & Spracklen, D. V. (2009). Atmospheric budget of primary biological aerosol particles from fungal spores. Geophysical Research Letters, 36, L09806.

    Article  Google Scholar 

  • Herrera, M. L., Vallor, A. C., Gelfond, J. A., Patterson, T. F., & Wickes, B. L. (2009). Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus. Journal of Clinical Microbiology, 47, 1325–1332.

    Article  CAS  Google Scholar 

  • Horner, W. E., Helbling, A., Salvaggio, J. E., & Lehrer, S. B. (1995). Fungal allergens. Clinical Microbiology Reviews, 8, 161–179.

    CAS  Google Scholar 

  • Hoseini, M., Jabbari, H., Naddafi, K., Nabizadeh, R., Rahbar, M., Yunesian, M., et al. (2013). Concentration and distribution characteristics of airborne fungi in indoor and outdoor air of Tehran subway stations. Aerobiologia, 29, 355–363.

    Article  Google Scholar 

  • Hospodsky, D., Yamamoto, N., & Peccia, J. (2010). Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Applied and Environmental Microbiology, 76, 7004–7012.

    Article  CAS  Google Scholar 

  • Kauffman, H. F., & van der Heide, S. (2003). Exposure, sensitization, and mechanisms of fungus-induced asthma. Current Allergy and Asthma Reports, 3, 430–437.

    Article  Google Scholar 

  • Klepeis, N. E., Nelson, W. C., Ott, W. R., Robinson, J. P., Tsang, A. M., Switzer, P., et al. (2001). The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology, 11, 231–252.

    Article  CAS  Google Scholar 

  • Kumari, P., Woo, C., Yamamoto, N., & Choi, H.-L. (2016). Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons. Scientific Reports, 6, 37929.

    Article  CAS  Google Scholar 

  • Lee, S.-A., Adhikari, A., Grinshpun, S. A., McKay, R., Shukla, R., & Reponen, T. (2006a). Personal exposure to airborne dust and microorganisms in agricultural environments. Journal of Occupational and Environmental Hygiene, 3, 118–130.

    Article  Google Scholar 

  • Lee, S., An, C., Xu, S., Lee, S., & Yamamoto, N. (2016). High-throughput sequencing reveals unprecedented diversities of Aspergillus species in outdoor air. Letters in Applied Microbiology, 63, 165–171.

    Article  CAS  Google Scholar 

  • Lee, T., Grinshpun, S. A., Martuzevicius, D., Adhikari, A., Crawford, C. M., & Reponen, T. (2006b). Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes. Atmospheric Environment, 40, 2902–2910.

    Article  CAS  Google Scholar 

  • Lee, S.-A., & Liao, C.-H. (2014). Size-selective assessment of agricultural workers’ personal exposure to airborne fungi and fungal fragments. Science of the Total Environment, 466–467, 725–732.

    Article  Google Scholar 

  • Lee, S., & Yamamoto, N. (2015). Accuracy of the high-throughput amplicon sequencing to identify species within the genus Aspergillus. Fungal Biology, 119, 1311–1321.

    Article  CAS  Google Scholar 

  • Li, X.-G., Ding, C.-F., Zhang, T.-L., & Wang, X.-X. (2014). Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biology & Biochemistry, 72, 11–18.

    Article  CAS  Google Scholar 

  • Licina, D., Tian, Y., & Nazaroff, W. W. (2017). Emission rates and the personal cloud effect associated with particle release from the perihuman environment. Indoor Air. doi:10.1111/ina.12365.

    Google Scholar 

  • Madsen, A. M. (2006). Exposure to airborne microbial components in autumn and spring during work at Danish biofuel plants. Annals of Occupational Hygiene, 50, 821–831.

    CAS  Google Scholar 

  • Mark, D., & Vincent, J. H. (1986). A new personal sampler for airborne total dust in workplaces. Annals of Occupational Hygiene, 30, 89–102.

    Article  CAS  Google Scholar 

  • McCartney, H. A., Schmechel, D., & Lacey, M. E. (1993). Aerodynamic diameter of conidia of Alternaria species. Plant Pathology, 42, 280–286.

    Article  Google Scholar 

  • McDonagh, A., & Byrne, M. A. (2014). A study of the size distribution of aerosol particles resuspended from clothing surfaces. Journal of Aerosol Science, 75, 94–103.

    Article  CAS  Google Scholar 

  • Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M., & Douwes, J. (2011). Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environmental Health Perspectives, 119, 748–756.

    Article  CAS  Google Scholar 

  • Milstone, L. M. (2004). Epidermal desquamation. Journal of Dermatological Science, 36, 131–140.

    Article  Google Scholar 

  • Mitakakis, T. Z., Tovey, E. R., Xuan, W., & Marks, G. B. (2000). Personal exposure to allergenic pollen and mould spores in inland New South Wales, Australia. Clinical and Experimental Allergy, 30, 1733–1739.

    Article  CAS  Google Scholar 

  • Mitchell, J. I., & Zuccaro, A. (2006). Sequences, the environment and fungi. Mycologist, 20, 62–74.

    Article  Google Scholar 

  • Nilsson, R. H., Bok, G., Ryberg, M., Kristiansson, E., & Hallenberg, N. (2009). A software pipeline for processing and identification of fungal ITS sequences. Source Code for Biology and Medicine, 4, 1.

    Article  Google Scholar 

  • O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., et al. (2009). A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genetics and Biology, 46, 936–948.

    Article  Google Scholar 

  • O’Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J. M., & Vilgalys, R. (2005). Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 71, 5544–5550.

    Article  Google Scholar 

  • O’Donnell, K., & Cigelnik, E. (1997). Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution, 7, 103–116.

    Article  Google Scholar 

  • Palmgren, U., Ström, G., Blomquist, G., & Malmberg, P. (1986). Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis—CAMNEA method. Journal of Applied Bacteriology, 61, 401–406.

    Article  CAS  Google Scholar 

  • Pasanen, A. L. (2001). A review: Fungal exposure assessment in indoor environments. Indoor Air, 11, 87–98.

    Article  CAS  Google Scholar 

  • Peccia, J., & Hernandez, M. (2006). Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: A review. Atmospheric Environment, 40, 3941–3961.

    Article  CAS  Google Scholar 

  • Pringle, A. (2013). Asthma and the diversity of fungal spores in air. PLoS Pathogens, 9, e1003371.

    Article  CAS  Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75, 7537–7541.

    Article  CAS  Google Scholar 

  • Shelton, B. G., Kirkland, K. H., Flanders, W. D., & Morris, G. K. (2002). Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 68, 1743–1753.

    Article  CAS  Google Scholar 

  • Shinohara, N., Kumagai, K., Yamamoto, N., Yanagisawa, Y., Fujii, M., & Yamasaki, A. (2004). Field validation of an active sampling cartridge as a passive sampler for long-term carbonyl monitoring. Journal of the Air and Waste Management Association, 54, 419–424.

    Article  CAS  Google Scholar 

  • Simon-Nobbe, B., Denk, U., Pöll, V., Rid, R., & Breitenbach, M. (2008). The spectrum of fungal allergy. International Archives of Allergy and Immunology, 145, 58–86.

    Article  Google Scholar 

  • Takahashi, T. (1997). Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia, 139, 23–33.

    Article  CAS  Google Scholar 

  • Taylor, J. E., Groenewald, J. Z. E., & Crous, P. W. (2003). A phylogenetic analysis of Mycosphaerellaceae leaf spot pathogens of Proteaceae. Mycological Research, 107, 653–658.

    Article  CAS  Google Scholar 

  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., et al. (2014). Global diversity and geography of soil fungi. Science, 346, 1256688.

    Article  Google Scholar 

  • Vesper, S. (2011). Traditional mould analysis compared to a DNA-based method of mould analysis. Critical Reviews in Microbiology, 37, 15–24.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols a guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Williams, R. O. N., Suggs, J., Zweidinger, R., Evans, G., Creason, J., Kwok, R., et al. (2000). The 1998 Baltimore Particulate Matter Epidemiology-Exposure Study: Part 1. Comparison of ambient, residential outdoor, indoor and apartment particulate matter monitoring. Journal of Exposure Analysis and Environmental Epidemiology, 10, 518–532.

    Article  CAS  Google Scholar 

  • Wu, Z., Blomquist, G., Westermark, S.-O., & Wang, X.-R. (2002). Application of PCR and probe hybridization techniques in detection of airborne fungal spores in environmental samples. Journal of Environmental Monitoring, 4, 673–678.

    Article  CAS  Google Scholar 

  • Yamamoto, N., & Bibby, K. (2014). Clustering of fungal community internal transcribed spacer sequence data obscures taxonomic diversity. Environmental Microbiology, 16, 2491–2500.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Bibby, K., Qian, J., Hospodsky, D., Rismani-Yazdi, H., Nazaroff, W. W., et al. (2012). Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME Journal, 6, 1801–1811.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Hospodsky, D., Dannemiller, K., Nazaroff, W. W., & Peccia, J. (2015a). Indoor emissions as a primary source of airborne allergenic fungal particles in classrooms. Environmental Science and Technology, 49, 5098–5106.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Matsuki, H., & Yanagisawa, Y. (2007). Application of the personal aeroallergen sampler to assess personal exposures to Japanese cedar and cypress pollens. Journal of Exposure Science & Environmental Epidemiology, 17, 637–643.

    Article  CAS  Google Scholar 

  • Yamamoto, N., Matsuki, Y., Yokoyama, H., & Matsuki, H. (2015b). Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. PLoS ONE, 10, e0131710.

    Article  Google Scholar 

  • Yamamoto, N., Nazaroff, W. W., & Peccia, J. (2014). Assessing the aerodynamic diameters of taxon-specific fungal bioaerosols by quantitative PCR and next-generation DNA sequencing. Journal of Aerosol Science, 78, 1–10.

    Article  Google Scholar 

  • Yamamoto, N., Shendell, D. G., & Peccia, J. (2011). Assessing allergenic fungi in house dust by floor wipe sampling and quantitative PCR. Indoor Air, 21, 521–530.

    Article  CAS  Google Scholar 

  • Yang, W., Lee, K., Yoon, C., Yu, S., Park, K., & Choi, W. (2011). Determinants of residential indoor and transportation activity times in Korea. Journal of Exposure Science & Environmental Epidemiology, 21, 310–316.

    Article  Google Scholar 

  • Yao, M., & Mainelis, G. (2007). Analysis of portable impactor performance for enumeration of viable bioaerosols. Journal of Occupational and Environmental Hygiene, 4, 514–524.

    Article  Google Scholar 

  • Yuill, E. (1950). The numbers of nuclei in conidia of Aspergilli. Transactions of the British Mycological Society, 33, 324–331.

    Article  Google Scholar 

  • Zhou, B., Zhao, B., & Tan, Z. (2011). How particle resuspension from inner surfaces of ventilation ducts affects indoor air quality—A modeling analysis. Aerosol Science and Technology, 45, 996–1009.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Aspiring Researcher Program through Seoul National University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomichi Yamamoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Woo, C. & Yamamoto, N. Introducing DNA-based methods to compare fungal microbiota and concentrations in indoor, outdoor, and personal air. Aerobiologia 34, 1–12 (2018). https://doi.org/10.1007/s10453-017-9490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9490-6

Keywords

Navigation