Skip to main content
Log in

Atmospheric pollen dispersion from herbicide-resistant horseweed (Conyza canadensis L.)

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

Horseweed (Conyza canadensis (L.) Cronq.) with evolved herbicide resistance has become an especially problematic weed in crop production across the USA and on four continents (North America, South America, Asia, and Europe). Spread of herbicide resistance can occur through pollen-mediated gene flow between resistant and susceptible horseweed populations. However, there are little knowledge, preventive guidelines, and mechanism modeling for pollen transport in this system. We need to better understand pollen dispersion and deposition in the context of atmospheric conditions, herbicide-resistant horseweed patch size, and buffer crop type, height, and field size. A mechanistic model is needed to account for these. A pollen dispersion and deposition model was calibrated and validated using 2013 experimental field data. The validated model was run for various combinations of atmospheric conditions, horseweed characteristics (source strength), and buffer species and size (pollen can be intercepted by crop plants). Large fields with crops with a high leaf area density and tall plants can effectively prevent pollen dispersion. The information will help provide guidelines for preventing herbicide resistance spread from herbicide-resistant weeds and genetically modified plants in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austerlitz, F., Dick, C. W., Dutech, C. E., Klein, K., Oddou-Muratorio, S., Smouse, P. E., et al. (2004). Using genetic markers to estimate the pollen dispersal curve. Molecular Ecology, 13(4), 937–954.

    Article  Google Scholar 

  • Aylor, D. E. (1982). Modeling spore dispersal in a barley crop. Agricultural Meteorology, 26(3), 215–219. doi:10.1016/0002-1571(82)90032-2.

    Article  Google Scholar 

  • Aylor, D. E. (2002). Settling speed of corn (Zea mays) pollen. Journal of Aerosol Science, 33(11), 1601–1607. doi:10.1016/S0021-8502(02)00105-2.

    Article  CAS  Google Scholar 

  • Aylor, D. E. (2003). Rate of dehydration of corn (Zea mays L.) pollen in the air. Journal of Experimental Botany, 54(391), 2307–2312.

    Article  CAS  Google Scholar 

  • Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remote-piloted airplanes and lagrangian stochastic modeling. Journal of Applied Meteorology and Climatology, 45(7), 1003–1015. doi:10.1175/JAM2381.1.

    Article  Google Scholar 

  • Aylor, D. E., & Ferrandino, F. J. (1989). Dispersion of spores released from an elevated line source within a wheat canopy. Boundary-Layer Meteorology, 46(3), 251–273. doi:10.1007/BF00120842.

    Article  Google Scholar 

  • Aylor, D. E., & Flesch, T. K. (2001). Estimating spore release rates using a lagrangian stochastic simulation model. Journal of Applied Meteorology, 40(7), 1196–1208. doi:10.1175/1520-0450(2001)040<1196:ESRRUA>2.0.CO;2.

    Article  Google Scholar 

  • Bae, T. W., Vanjildorj, E., Song, S. Y., Nishiguchi, S., Yang, S. S., Song, I. J., et al. (2008). Environmental risk assessment of genetically engineered herbicide-tolerant zoysio japonica. Journal of Environmental Quality, 37, 207–218.

    Article  CAS  Google Scholar 

  • Becker, H. C., Damgaard, C., & Karlsson, B. (1992). Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theoretical and Applied Genetics, 84, 303.

    CAS  Google Scholar 

  • Belanger, F. C., Meagher, T. R., Day, P. R., Plumley, K., & Meyer, W. A. (2003). Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Science, 43, 240–246.

    Google Scholar 

  • Bruce, J. A., & Kells, J. J. (1990). Horseweed (Conyza canadensis) Control in no-tillage soybeans (glycine max) with preplant and preemergence herbicides. Weed Technology, 4(3), 642–647. http://www.jstor.org/stable/3987525.

  • Chamecki, M., Gleicher, S. C., Dufault, N. S., & Isard, S. A. (2011). Diurnal variation in settling velocity of pollen released from maize and consequences for atmospheric dispersion and cross-pollination. Agricultural and Forest Meteorology, 151(8), 1055–1065. doi:10.1016/j.agrformet.2011.03.009.

    Article  Google Scholar 

  • Dauer, J. T., Mortensen, D. A., & Humston, R. (2006a). Controlled experiments to predict horseweed (Conyza canadensis) dispersal distances. Weed Science, 54(3), 484–489.

    Article  CAS  Google Scholar 

  • Dauer, J. T., Mortensen, D. A., Luschei, E. C., Isard, S. A., Shields, E., & Van-Gessel, M. J. (2009). Conyza canadensis seed ascent in the lower atmosphere. Agricultural and Forest Meteorology, 149(3–4), 526–534. doi:10.1016/j.agrformet.2008.10.005.

    Article  Google Scholar 

  • Dauer, J. T., Mortensen, D. A., & Vangessel, M. J. (2006b). Temporal and spatial dynamics of long-distance Conyza canadensis seed dispersal. Journal of Applied Ecology, 44(1), 105–114. doi:10.1111/j.1365-2664.2006.01256.x.

    Article  Google Scholar 

  • De Visscher, A. (2013). Air dispersion modeling: Foundations and applications. New York: Wiley.

    Book  Google Scholar 

  • Emberlin, J., Beverley, A.-G., & Julie, T. (1999). A report on the dispersal of maize pollen. http://www.soilassociation.org/.

  • Fitt, B. D. L., Gregory, P. H., Todd, A. D., McCartney, H. A., & Macdonald, O. C. (1987). Spore dispersal and plant disease gradients; a comparison between two empirical models. Journal of Phytopathology, 118(3), 227–242. doi:10.1111/j.1439-0434.1987.tb00452.x.

    Article  Google Scholar 

  • Haldane, J. B. S. (1948). The theory of a cline. Journal of Genetics, 48(3), 277–284. doi:10.1007/BF02986626.

    Article  CAS  Google Scholar 

  • Heap, I. (2014). The international survey of herbicide resistant weeds. www.weedscience.com.

  • Henry, R. S., Davis, V. M. D., & Johnson, W. G. (2008). Open-pollinated transfer of glyphosate resistance in horseweed (Conyza canadensis) in greenhouse isolation. http://www.btny.purdue.edu/weedscience/Postslide/Henry08-01.pdf.

  • Huang, H., Ye, R., Qi, M., Li, X., Miller, D. R., Stewart, C. N., et al. (2015). Wind-mediated horseweed (Conyza canadensis) gene flow: pollen atmospheric emission, dispersion, and deposition. Evolution and Ecology, 5(13): 2646–2658. doi:10.1002/ece3.1540. http://onlinelibrary.wiley.com/doi/10.1002/ece3.1540/full.

  • Kareiva, P., Morris, W., & Jacobi, C. M. (2008). Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Molecular Ecology, 3(1), 15–21. doi:10.1111/j.1365-294X.1994.tb00037.x.

    Article  Google Scholar 

  • Kausch, A. P., Hague, J., Oliver, M., Watrud, L. S., Mallory-Smith, C., Meier, V., et al. (2010). Gene flow in genetically engineered perennial grasses: Lessons for modification of dedicated bioenergy crops. Plant Biotechnology for Sustainable Production of Energy and Co-products Biotechnology in Agriculture and Forestry, 66(3), 285–297. doi:10.1007/978-3-642-13440-1_10.

    Article  Google Scholar 

  • Klein, E. K., Lavigne, C., Foueillassar, X., Gouyon, P.-H., & Larédo, C. (2003). Corn pollen dispersal: quasi-mechanistic models and field experiments. Ecological Monographs, 73(1), 131–150. doi:10.1890/0012-9615(2003)073[0131:CPDQMM]2.0.CO;2.

    Article  Google Scholar 

  • Lavigne, C., Klein, E., Vallée, P., Pierre, J., Godelle, B., & Renard, M. (1998). Theoretical and Applied Genetics, 96, 886. doi:10.1007/s001220050816.

    Article  Google Scholar 

  • Levin, D. A., & Kerster, H. W. (1974). Gene flow in seed plants. In Evolutionary biology (pp. 139–220). Boston, MA: Springer. doi:10.1007/978-1-4615-6944-2_5

  • Lin, J. J., Noll, K. E., & Holsen, T. M. (1994). Dry deposition velocities as a function of particle size in the ambient atmosphere. Aerosol Science and Technology, 20(3), 239–252. doi:10.1080/02786829408959680.

    Article  CAS  Google Scholar 

  • Loveless, M. D., & Hamrick, J. L. (1984). Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15, 65–95.

    Article  Google Scholar 

  • McCartney, H. A. (1994). Dispersal of spores and pollen from crops. Grana, 33(2), 76–80. doi:10.1080/00173139409427835.

    Article  Google Scholar 

  • Motten, A. F., & Antonovics, J. (1992). Determinants of outcrossing rate in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). American Journal of Botany, 79(4), 419–427.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (1989). A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology, 70(2), 329–338. doi:10.2307/1937537.

    Article  Google Scholar 

  • Raupach, M. R. (1993). Dry deposition of gases and particles to vegetation. Clean Air: Journal of the Clean Air Society of Australia and New Zealand, 27(4), 200–203.

    Google Scholar 

  • Raupach, M. R., & Briggs, P. R. (1998). Integrative modeling of transport and fate of endosulfan in the riverine environment, summary report. Canberra, Australia: CSIRO Land and Water.

    Google Scholar 

  • Regehr, D. L., & Bazzaz, F. A. (1979). The population dynamics of erigeron Canadensis, a successional winter annual. The Journal of Ecology, 67(3), 923. doi:10.2307/2259221.

    Article  Google Scholar 

  • Reichman, J. R., Watrud, L. S., Lee, E. H., Burdick, C. A., Bollrnan, M. A., Storm, M. J., et al. (2006). Establishment of transgenic herbicide- resistant creeping bentgrass (Ap-ostisstolonifera L.) in nonagronomic habitats. Molecular Ecology, L5, 4243–4255.

    Article  Google Scholar 

  • Shields, E. J., Dauer, J. T., VanGessel, M. J., & Neumann, G. (2006). Horseweed (Conyza canadensis) seed collected in the planetary boundary layer. Weed Science, 54(6), 1063–1067. doi:10.1614/WS-06-097R1.1.

    Article  CAS  Google Scholar 

  • Shirolkar, J. S., Coimbra, C. F. M., & Queiroz McQuay, M. (1996). Fundamental aspects of modeling turbulent particle dispersion in dilute flows. Progress in Energy and Combustion Science, 22(4), 363–399. doi:10.1016/S0360-1285(96)00006-8.

    Article  CAS  Google Scholar 

  • Smisek, A. J. J. (1995). The evolution of resistance to paraquat in populations of Erigeron canadensis L. London, Ontario: University of Western Ontario.

    Google Scholar 

  • Sosnoskie, L. M., Webster, T. M., Dales, D., Rains, G. C., Grey, T. L., & Culpepper, A. S. (2009). Pollen grain size, density, and settling velocity for Palmer amaranth (Amaranthus palmeri). Weed Science, 57, 404–409.

    Article  CAS  Google Scholar 

  • Tackenberg, O. (2003). Modeling long-distance dispersal of plant diaspores by wind. Ecological Monographs, 73(2), 173–189. http://www.jstor.org/stable/3100012.

  • Tufto, J., Engen, S., & Hindar, K. (1997). Stochastic dispersal processes in plant populations. Theoretical Population Biology, 52(1), 16–26. doi:10.1006/tpbi.1997.1306.

    Article  CAS  Google Scholar 

  • Van den Hurk, B. J. J. M., & Baldocchi, D. D. (1990). Random-walk models for simulating water vapor exchange within and above a soybean canopy. Silver Spring, MD: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Air Resources Laboratory.

  • van Hout, R., Chamecki, M., Brush, G., Katz, J., & Parlange, M. B. (2008). The influence of local meteorological conditions on the circadian rhythm of corn (Zea mays L.) pollen emission. Agricultural and Forest Meteorology, 148(6–7), 1078–1092. doi:10.1016/j.agrformet.2008.02.009.

    Article  Google Scholar 

  • Wang, J., & Yang, X. (2010). Development and validation of atmospheric gene flow model for assessing environmental risks from transgenic corn crops. International Journal of Agricultural & Biological Engineering, 3(2), 18–30. doi:10.3965/j.issn.1934-6344.2010.02.018-030.

    Google Scholar 

  • Wang, J., Yang, X., Li, Y., & Elliott, P. F. (2006). Pollination competition effects on gene-flow estimation: Using regular vs. male-sterile bait plants. Agronomy Journal, 98(4), 1060. doi:10.2134/agronj2005.0104.

    Article  Google Scholar 

  • Watrud, L. S., Lee, E. H., Fairbrother, A., Burdick, C., Reichman, J. R., Bollman, M., et al. (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proceedings of the National Academy of Sciences of the United States of America, 101, 14533–14538.

    Article  CAS  Google Scholar 

  • Weaver, S. E. (2001). The biology of Canadian weeds. 115. Conyza canadensis. Canadian Journal of Plant Science, 81(4), 867–875. doi:10.4141/P00-196.

    Article  Google Scholar 

  • Wipff, J. K., & Fricker, C. (2001). Gene flow from transgenic creeping bentgrass (Agrostis stolonifera La.) in the Willamette Valley, Oregon. International Turfgrass Society Research Journal, 9, 224–242.

    Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–138.

    CAS  Google Scholar 

  • Yang, X., Madden, L. V., & Brazee, R. D. (1991). Application of the diffusion equation for modelling splash dispersal of point-source pathogens. New Phytologist, 118(2), 295–301. doi:10.1111/j.1469-8137.1991.tb00980.x.

    Article  Google Scholar 

  • Ye, R., Huang, H., Alexander, J., Liu, W., Millwood, R., Wang, J., et al. (2016). Field studies on dynamic pollen production, deposition and dispersion of glyphosate resistant horseweed (Conyza canadensis). Weed Science, 64(1), 101–111. doi:10.1614/WS-D-15-00073.1.

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of a USDA funded project “Atmospheric Gene Flow in Horseweed” (USDA-NIFA-AFRI-Controlling Weedy and Invasive Plants Grant, 2012-67013-19687). The authors gratefully acknowledge financial support for this research from USDA, and the Illinois State Water Survey at the University of Illinois at Urbana-Champaign. We thank the excellent programming work by Ms. Xiufen Cui. Opinions expressed are those of the authors and not necessarily those of the Illinois State Water Survey, the Prairie Research Institute, the University of Illinois, or the University of Tennessee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junming Wang or Meilan Qi.

Additional information

Junming Wang, Meilan Qi, Haiyan Huang, and Rongjian Ye have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Qi, M., Huang, H. et al. Atmospheric pollen dispersion from herbicide-resistant horseweed (Conyza canadensis L.). Aerobiologia 33, 393–406 (2017). https://doi.org/10.1007/s10453-017-9477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-017-9477-3

Keywords

Navigation