Skip to main content

Advertisement

Log in

Influence of abiotic factors on the composition and abundance of aquatic ferns occurring in the state of Paraíba, Brazil

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Aquatic ecosystems are influenced by water quality and the surrounding environment, and changes to such ecosystems exert an effect on species. The aim of the present study was to relate the composition/abundance of species of aquatic ferns to both abiotic factors of water quality (total phosphorus and chlorophyll a) and the characteristics of the surrounding environment (rural, urban and vegetation). We analyzed 53 aquatic ecosystems in the state of Paraíba with lentic characteristics, considering total phosphorus and chlorophyll a as well as the classification of land use and occupation in the surrounding areas. We recorded nine species of aquatic ferns, which demonstrated a preference for environments with good water quality (low concentration of chlorophyll a) as well as sensitivity to rural and urban activities. The individual analysis of the species revealed that abiotic factors exerted an influence on the occurrence and abundance of the species. Cyclosorus interruptus (Willd.) H. Ito proved to be resistant to impacted environments, whereas Marsilea sp. and Ceratopteris thalictroides (L.) Brongn proved to be bioindicators of water quality. Our study revealed species considered bioindicators of good water quality and identified changes in the composition/abundance of the species in relation to different land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • AESA (2018) Agência Executiva de Gestão das Águas. Disponível em: <http://www.aesa.pb.gov.br/aesa-website/meteorologia-chuvas/> Acesso em: 24 Novembro 2017

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728

    Article  Google Scholar 

  • APHA (1992) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Araujo ES, Sabino JHF, Cotarelli VM, Filho JAS, Campelo MJA (2012) Riqueza e diversidade de macrófitas aquáticas em mananciais da Caatinga. Diálogos Ciência 32:229–234

    Article  Google Scholar 

  • Barbosa JEL, Andrade RS, Lins RP, Diniz CR (2006) Diagnóstico do estado trófico e aspectos limnológicos de sistemas aquáticos da Bacia Hidrográfica do Rio Taperoá, Trópico semi-árido Brasileiro. Revista de Biologia e Ciências da Terra 6(Suplemento Especial 1):81–89

    Google Scholar 

  • Barros SCA, Xavier SRS (2013) Samambaias em remanescente de Floresta Atlântica Nordestina (Parque Estadual Mata do Xém-Xém, Bayeux, Paraíba). Pesquisas, Botânica 64:207–224

    Google Scholar 

  • Bruni I, Gentili R, DeMattia F, Cortis P, Rossi G, Labra M (2013) A multi-level analysis to evaluate the extinction risk of and conservation strategy for the aquatic fern Marsilea quadrifolia L. in Europe. Aquat Bot 111:35–42

    Article  Google Scholar 

  • Calijuri ML, Castro JS, Costa LS, Assemany PP, Alves JEM (2015) Impact of land use/land cover changes on water quality and hydrological behavior of an agricultural subwatershed. Environ Earth Sci 74:5373–5382

    Article  Google Scholar 

  • Cervi AC, Bona C, Moço MCC, Linsingen L (2009) Macrófitas aquáticas do Município de General Carneiro, Paraná, Brasil. Biota Neotrop 9:215–222

    Article  Google Scholar 

  • Ceschin S, Zuccarello V, Caneva G (2010) Role of macrophyte communities as bioindicators of water quality: application on the Tiber River basin (Italy). Plant Biosyst 144:528–536

    Article  Google Scholar 

  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM (2008) Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595:9–26

    Article  Google Scholar 

  • Chorus L, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Spon E & EM, London

    Book  Google Scholar 

  • Coelho FF, Lopes FS, Sperber CF (2005) Persistence strategy of Salvinia auriculata Aublet in temporary ponds of Southern Pantanal, Brazil. Aquat Bot 81:343–352

    Article  Google Scholar 

  • Cunha TB, Linhares FM, Santos JYG, Vianna PCG (2012) Mapeamento e tipologia dos conflitos pela gestão e controle das águas no estado da Paraíba. Boletim de Geografia 30(2):31–43

    Article  Google Scholar 

  • Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134

    Article  Google Scholar 

  • Denny P (1985) The ecology and management of African Wetland vegetation. W. Junk, The Hague

    Book  Google Scholar 

  • Dong YH, Gituru RW, Chen JM, Wang QF (2005) Effect of habitat modification on the distribution of the endangered aquatic fern Ceratopteris thalictroides (Parkeriaceae) in China. J Freshw Ecol 20:689–693

    Article  CAS  Google Scholar 

  • Dong YH, Wang QF, Gituru RW (2012) Effect of habitat modification on the distribution of the endangered aquatic fern Ceratopteris pteridoides (Parkeriaceae) in China. Am Fern J 102:136–146

    Article  Google Scholar 

  • Esteves FA, Pereira FM (2011) Eutrofização Artificial. In: Esteves FA (ed) Fundamentos de limnologia. Editora Interciência Ltda, Rio de Janeiro

    Google Scholar 

  • Ferreira TF, Junior CRF, Marques DM (2008) Efeito da Liberação de Nutrientes por Plantas Aquáticas sobre a Dinâmica de Estados Alternativos da Comunidade Fitoplanctônica em um Lago Raso Subtropical. Revista Brasileira de Recursos Hídricos 13:151–160

    Google Scholar 

  • Ferreira FA, Mormul RP, Pedrali G, Pott VJ, Pott A (2010) Estrutura da comunidade de macrófitas aquáticas em três lagoas do Parque Estadual do Rio Doce, Minas Gerais, Brasil. Hoehnea 37:43–52

    Article  Google Scholar 

  • Ferreira FA, Mormul RP, Catian G, Pott A, Pedralli G (2015) Distribution pattern of neotropical aquatic macrophytes in permanent lakes at a Ramsar site. Braz J Bot 38:131–139

    Article  Google Scholar 

  • Flora do Brasil (2020) em construção Jardim Botânico do Rio de Janeiro Disponível em. http://floradobrasil.jbrj.gov.br. Acesso em 18 Janeiro 2018

  • Folegatti MV, Sánchez-Román RM, Coelho RD, Frizzone JA (2010) Gestão dos Recursos Hídricos e Agricultura Irrigada no Brasil. In: Bicudo CEM, Tundisi JG, Scheuenstuhl MCB (eds) Águas do Brasil: Análises Estratégicas. Instituto de Botânica, São Paulo

    Google Scholar 

  • Fuentes II, Espadas-Gil F, Talavera-May C, Fuentes G, Santamaría JM (2014) Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues and its effect on plant physiological processes. Aquat Toxicol 155:142–150

    Article  CAS  PubMed  Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to riverine systems. Aquat Sci 64:118–128

    Article  CAS  Google Scholar 

  • Gomes MP, Brito JCM, Carneiro MMLC, Cunha MRR, Garcia QS, Figueredo CC (2018) Responses of the nitrogen-fixing aquatic fern Azolla to water contaminated with ciprofloxacin: impacts on biofertilization. Environ Pollut 232:293–299

    Article  CAS  PubMed  Google Scholar 

  • Henry-Silva GG, Camargo AFM, Pezzato MM (2008) Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia 610:153–160

    Article  CAS  Google Scholar 

  • Irgang BE, Pedralli G, Waechter JL (1984) Macrófitas aquáticas da estação ecológica do Taim, Rio Grande do Sul, Brasil. Rossléria 6(1):395–405

    Google Scholar 

  • Johnson DM (1986) Systematics of the new world species of Marsilea (Marsileaceae). Syst Bot Monogr 11:1–87

    Article  Google Scholar 

  • Leterme P, Londoño AM, Muñoz JE, Súarez J, Bedoya CA, Souffrant WB, Buldgen A (2009) Nutritional value of aquatic ferns (Azolla filiculoides Lam. and Salvinia molesta Mitchell) in pigs. Anim Feed Sci Technol 149:135–148

    Article  CAS  Google Scholar 

  • Lourenço JDS, Xavier SRS (2013) Samambaias da Estação Ecológia do Pau-Brasil, Paraíba, Brasil. Pesquisas, Botânica 64:225–242

    Google Scholar 

  • Lumpkin TA, Plucknett DL (1980) Azolla: botany, physiology, and use as a green manure. Econ Bot 34(2):111–153

    Article  CAS  Google Scholar 

  • Lürling M, Geest G, Scheffer M (2006) Importance of nutrient competition and allelopathic effects in suppression of the green alga Scenedesmus obliquus by the macrophytes Chara, Elodea and Myriophyllum. Hydrobiologia 556:209–220

    Article  CAS  Google Scholar 

  • Mickel JT, Smith AR (2004) The pteridophytes of Mexico. Memoirs of the New york Botanical Garden

  • Moran RC, Riba R (1995) Psilotaceae a Salviniaceae. In: Sousa M, Knapp S, Davidse G (eds) Flora Mesoamericana. Universidad Nacional Autónoma de México, México

    Google Scholar 

  • Moura MAM, Franco DAS, Matallo MB (2009) Manejo integrado de macrófitas aquáticas. Biológico 71:77–82

    Google Scholar 

  • Moura-Júnior EG, Lima LF, Silva SSL, Paiva RMS, Ferreira FA, Zickel CS, Pott A (2013) Aquatic macrophytes of Northeastern Brazil: checklist, richness, distribution and life forms. Check List 9:298–312

    Article  Google Scholar 

  • Pedralli G (2003) Macrófitas aquáticas como bioindicadoras da qualidade da água: alternativas para usos múltiplos de reservatórios. In: Thomaz SM, Bini LM (eds) Ecologia e Manejo de Macrófitas Aquáticas. Universidade Estadual de Maringá, Maringá

    Google Scholar 

  • Pereira SA, Trindade CRT, Albertoni EF, Palma-Silva C (2012) Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil. Acta Limnol Bras 24:52–63

    Article  Google Scholar 

  • Pereira AFN, Silva IAA, Santiago ACP, Barros ICL (2014) Efeito de borda sobre a comunidade de samambaias em fragmento de floresta atlântica (Bonito, Pernambuco, Brasil). Interciência 39:281–287

    Google Scholar 

  • Petrucio MM, Esteves FA (2000) Influence of photoperiod on the uptake of nitrogen and phosphorus in the water by Eichhornia crassipes and Salvinia auriculata. Rev Bras Biol 60(3):373–379

    Article  CAS  PubMed  Google Scholar 

  • Pompêo M (2008) Monitoramento e manejo de macrófitas aquáticas. Oecologia brasiliensis 12:406–424

    Google Scholar 

  • Pott VJ, Pott A (2000) Plantas Aquáticas do Pantanal. Embrapa, Brasília

    Google Scholar 

  • PPG I (2016) A community-derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603

    Article  Google Scholar 

  • Prado J, Sylvestre LS, Labiak PH, Windisch PG, Salino A, Barros ICL, Hirai RY, Almeida TE, Santiago ACP, Kieling-Rubio MA, Pereira AFN, Øllgaard B, Ramos CGV, Mickel JT, Dittrich VAO, Mynssen CM, Schwartsburd PB, Condack JPS, Pereira JBS, Matos FB (2015) Diversity of ferns and lycophytes in Brazil. Rodriguésia 66:1073–1083

    Article  Google Scholar 

  • Proctor GR (1985) Ferns of Jamaica. British Museum (Natural History), London

    Google Scholar 

  • Rajput KS, Kachhiyapatel RN, Patel SK, Raole VM (2016) Assessment of pteridophyte diversity and their status in Gujarat State, Western India. Plant Sci Today 3:337–348

    Article  Google Scholar 

  • R Development Core Team (2014) A language and environment for statistical computing R Foundation for statistical computing, Vienna Retrieved from http://www.R-projectorg/

  • Rolon AS, Maltchik L (2004) Richness and distribution of aquatic pteridophytes in wetlands of the State of Rio Grande do Sul (Brazil). Acta Limnologica Brasilica 16:51–61

    Google Scholar 

  • Salino A, Semir J (2002) Thelypteridaceae (Polypodiophyta) do Estado de São Paulo: macrothelypteris e Thelypteris subgêneros Cyclosorus e Steiropteris. Lundiana 3:9–27

    Google Scholar 

  • Saluja R, Garg JK (2017) Macrophyte species composition and structure along littoral region in relation to limnological variables of a tropical wetland ecosystem. Chem Ecol 33:499–515

    Article  CAS  Google Scholar 

  • Santiago ACP, Sousa MA, Santana ES, Barros ICL (2014) Samambaias e licófitas da Mata do Buraquinho, Paraíba, Brasil. Biotemas 27:9–18

    Article  Google Scholar 

  • Santos VV, Barros ICL, Moura-Júnior AMM, Severi W, Magalhães KM (2014) Samambaias aquáticas da bacia do rio de Contas, Bahia, Brasil Neotropical. Biol Conserv 9:42–48

    Google Scholar 

  • Seabra VS, Damasceno J, Xavier RA, Dornellas PC (2014) Mapeamento do Uso e Cobertura do Solo da Bacia do Rio Taperoá: Região Semiárida do Estado da Paraíba. Revista Caminhos de Geografia 15(50):127–137

    Google Scholar 

  • Silva PCG, Moura MSB, Kiill LHP, Brito LTL, Pereira LA, Sá IB, Correia RC, Teixeira AHC, Cunha TJF, Filho CG (2010) Caracterização do Semiárido brasileiro: fatores naturais e humanos. In: Sá IB, Silva PCGS (eds) Semiárido. Pesquisa, Desenvolvimento e Inovação. Embrapa Semiárido. Petrolina, Brasileiro

    Google Scholar 

  • Silva JVH, Borges AKP, Morais PB, Picanço AP (2012) Compostagem das Macrófitas Aquáticas: Salvinia auriculata e Eichhornia crassipes retiradas do Reservatório da UHE Luis Eduardo Magalhães, Tocantins. Engenharia Ambiental 9(2):159–173

    Google Scholar 

  • Silvestre LC, Xavier SRS (2013) Samambaias em fragmento de Mata Atlântica, Sapé, Paraíba, Brasil. Boletim Museu Paraense Emílio Goeldi Ciências Naturais 8:431–447

    Google Scholar 

  • Soares DCF, Oliveira EF, Silva GDF, Duarte LP, Pott VJ, Vieira Filho SA (2008) Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA). Appl Radiat Isot 66(5):561–564

    Article  CAS  PubMed  Google Scholar 

  • Sousa BM (2016) Ocorrência e cobertura de Samambaias e suas relações com os fatores abióticos. 2016. Dissertação, Universidade Estadual da Paraíba

  • Thomaz SM, Esteves FA (2011) Comunidade de Macrófitas Aquáticas. In: Esteves FA (ed) Fundamentos de Limnologia. Editora Interciência Ltda, Rio de Janeiro

    Google Scholar 

  • Tundisi JG, Matsumura-Tundisi T (2008) Limnologia. Oficina de Textos, São Paulo

    Google Scholar 

  • Vollenweider RA, Kerekes JJ (1981) Background and summary results of the OECD cooperative programme on eutrophication. In: Restoration of lakes and inland waters. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Xavier SRS, Barros ICL, Santiago ACP (2012) Ferns and lycophytes in Brazil’s semi-arid region. Rodriguésia 63:483–488

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Universidade Estadual da Paraíba (UEPB) for support in transportation and laboratory analysis. Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (770738).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Nunes Bernardes Goetz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 50 kb)

Supplementary material 2 (PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goetz, M.N.B., Dantas, Ê.W. & Barros, I.C.L. Influence of abiotic factors on the composition and abundance of aquatic ferns occurring in the state of Paraíba, Brazil. Aquat Ecol 53, 557–567 (2019). https://doi.org/10.1007/s10452-019-09708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09708-1

Keywords

Navigation