Skip to main content
Log in

The power of numbers: dynamics of hatching and dormant egg production in two populations of the water flea Daphnia magna

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Many organisms that live in inland standing waters produce dormant life stages that can accumulate in propagule banks to survive temporarily unfavourable periods. These egg banks have important effects on the ecology of populations and communities in terms of phenology, population densities, the probability of extinction, species diversity and habitat connectivity in time and space. They also have important consequences for the evolutionary versatility of populations. Although diapause and dormant egg banks in freshwater zooplankton have been studied for several decades, little is known about the quantitative contribution of egg production and hatching to yearly egg bank budgets and their seasonality in natural ponds and lakes. Here we quantified inter- and intra-annual variation in hatching and dormant egg production in the water flea Daphnia magna in two natural shallow ponds in Flanders (Belgium) using high-intensity sampling and in situ measurements. Hatching started in spring and occurred in several bouts (April–July), accumulating to a yearly average total of 3.5 × 103 hatchlings m−2. Dormant egg production occurred in one-to-three bouts mainly during late spring and summer (May–August), resulting in a total yearly production ranging from 1.2 × 104 up to 17.3 × 104 ephippia m−2. In both years, there was an average surplus of 3.14 × 104 and 15.24 × 104 ephippia produced m−2 for ponds OM2 and OM3, respectively, contributing to the accumulation of the persistent egg bank. We discuss the ecological and evolutionary consequences of both the high number of ephippia that are produced and the high number of hatchlings at the start of each growing season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alekseev V, Lampert W (2001) Maternal control of resting-egg production in Daphnia. Nature 414:899–901

    Article  CAS  PubMed  Google Scholar 

  • Arbačiauskas K, Lampert W (2003) Seasonal adaptation of ex-ephippio and parthenogenetic offspring of Daphnia magna: differences in life history and physiology. Funct Ecol 17:431–437

    Article  Google Scholar 

  • Badosa A, Frisch D, Green AJ, Rico C, Gómez A (2017) Isolation mediates persistent founder effects on zooplankton colonisation in new temporary ponds. Sci Rep 7:43983

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottrell HH et al (1976) A review of some problems in zooplankton studies Norwegian. J Zool 24:419–456

    Google Scholar 

  • Bozelli RL, Tonsi M, Sandrini F, Manca M (2008) A big bang or small bangs? Effects of biotic environment on hatching. J Limnol 67:100–106

    Article  Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Article  Google Scholar 

  • Brendonck L, Riddoch BJ (2000) Egg bank dynamics in anostracan desert rock pool populations (Crustacea: Branchiopoda). Arch Hydrobiol 148:71–84

    Article  Google Scholar 

  • Cáceres CE (1998) Interspecific variation in the abundance, production, and emergence of Daphnia diapausing eggs. Ecology 79:1699–1710

    Article  Google Scholar 

  • Cáceres CE, Schwalbach MS (2001) How well do laboratory experiments explain field patterns of zooplankton emergence? Freshw Biol 46:1179–1189

    Article  Google Scholar 

  • Chesson P (1994) Multispecies competition in variable environments. Theor Popul Biol 45:227–276

    Article  Google Scholar 

  • Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. Am Nat 117:923–943

    Article  Google Scholar 

  • Cousyn C, De Meester L (1998) The vertical profile of resting egg banks in natural populations of the pond-dwelling cladoceran Daphnia magna Straus. Archiv für Hydrobiol 52:127–139

    Google Scholar 

  • De Meester L, Gómez A, Simon J-C (2004) Evolutionary and ecological genetics of cyclical parthenogens. Oxford University Press, Oxford

    Google Scholar 

  • De Meester L, Vanoverbeke J, De Gelas K, Ortells R, Spaak P (2006) Genetic structure of cyclic parthenogenetic zooplankton populations–a conceptual framework. Archiv für Hydrobiol 167:217–244

    Article  Google Scholar 

  • De Stasio BT (1989) The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70:1377–1389

    Article  Google Scholar 

  • De Stasio BT (1990) The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol Oceanogr 35:1079–1090

    Article  Google Scholar 

  • De Stasio BT, Hairston NG Jr (1992) Environmental variability and the persistence of multiple emergence strategies. Bull Math Biol 54:313–334. https://doi.org/10.1016/S0092-8240(05)80029-1

    Article  Google Scholar 

  • Decaestecker E, Declerck S, De Meester L, Ebert DJO (2005) Ecological implications of parasites in natural Daphnia populations. Oecologia 144:382–390

    Article  Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870–U816. https://doi.org/10.1038/nature06291

    Article  CAS  Google Scholar 

  • Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494

    Article  Google Scholar 

  • García-Roger EM, Carmona MJ, Serra M (2006) Patterns in rotifer diapausing egg banks: density and viability. J Exp Mar Biol Ecol 336:198–210. https://doi.org/10.1016/j.jembe.2006.05.009

    Article  Google Scholar 

  • Gilbert JJ (2017) Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 796:235–243

    Article  Google Scholar 

  • Green AJ, Sanchez MI, Amat F, Figuerola J, Hontoria F, Ruiz O, Hortas F (2005) Dispersal of invasive and native brine shrimps Artemia (Anostraca) via waterbirds. Limnol Oceanogr 50:737–742

    Article  Google Scholar 

  • Gyllström M (2004) Induction and termination of diapause in a freshwater zooplankton community. Archiv für Hydrobiol 161:81–97. https://doi.org/10.1127/0003-9136/2004/0161-0081

    Article  Google Scholar 

  • Gyllström M, Hansson LA (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66:274–295. https://doi.org/10.1007/s00027-004-0712-y

    Article  Google Scholar 

  • Hairston NG Jr (1996) Zooplankton egg banks as biotic reservoirs in changing environments. Limnol Oceanogr 41:1087–1092

    Article  Google Scholar 

  • Hairston JNG, De Stasio Jr BT (1988) Rate of evolution slowed by a dormant propagule pool. Nature 336:239–242

    Article  Google Scholar 

  • Hairston NG Jr, Vanbrunt RA, Kearns CM, Engstrom DR (1995) Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76:1706–1711

    Article  Google Scholar 

  • Hairston NG Jr, Hansen A-M, Schaffner WR (2000) The effect of diapause emergence on the seasonal dynamics of a zooplankton assemblage. Freshw Biol 45:133–145. https://doi.org/10.1046/j.1365-2427.2000.00386.x

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Hebert PDN (1987) Genetics of Daphnia. Memorie Dell’institutio Italiano Di Idrobiolgia 45:439–460

    Google Scholar 

  • Hobæk A, Larsson P (1990) Sex determination in Daphnia magna. Ecology 71:2255–2268. https://doi.org/10.2307/1938637

    Article  Google Scholar 

  • Hochmuth JD, De Meester L, Pereira CMS, Janssen CR, De Schamphelaere KA (2015) Rapid adaptation of a Daphnia magna population to metal stress is associated with heterozygote excess. Environ Sci Technol 49:9298–9307

    Article  CAS  PubMed  Google Scholar 

  • Hulsmans A, Moreau K, De Meester L, Riddoch BJ, Brendonck L (2007) Direct and indirect measures of dispersal in the fairy shrimp Branchipodopsis wolfi indicate a small-scale isolation-by-distance pattern. Limnol Oceanogr 52:676–684

    Article  Google Scholar 

  • Kleiven OT, Larsson P, Hobæk A (1992) Sexual reproduction in Daphnia magna requires three stimuli. Oikos 65(2):197–206

    Article  Google Scholar 

  • Latta LIV, Fisk D, Knapp R, Pfrender M (2010) Genetic resilience of Daphnia populations following experimental removal of introduced fish. Conserv Genet 11:1737–1745. https://doi.org/10.1007/s10592-010-0067-y

    Article  Google Scholar 

  • Leibold MA et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  • Louette G, Vanoverbeke J, Ortells R, De Meester L (2007) The founding mothers: the genetic structure of newly established Daphnia populations. Oikos 116:728–741

    Article  CAS  Google Scholar 

  • Lynch M (1983) Ecological genetics of Daphnia pulex. Evolution 37:358–374

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, vol 1. Sinauer, Sunderland, MA

    Google Scholar 

  • Mergeay J, Vanoverbeke J, Verschuren D, Meester LD (2007) Extinction, recolonization, and dispersal through time in a planktonic crustacean. Ecology 88:3032–3043

    Article  PubMed  Google Scholar 

  • Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG Jr (2012) Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc R Soc B-Biol Sci 279:1873–1882. https://doi.org/10.1098/rspb.2011.2404

    Article  Google Scholar 

  • Mitchell SE, Carvalho GR, Weider LJ (1998) Stability of genotype frequencies in an intermittent Daphnia magna population. In: Lampert W, Brendonck L, De Meester L, Hairston N (eds) Advances in Limnology: Evolutionary and ecological aspects of crustacean diapause. Proceedings of the symposium: Diapause in the Crustacea-with invited contributions on non-crustacean taxa, Gent, Belgium, Augustus 24--29, 1997. E. Schweizerbart'sche Verlagsbuchhandlung (Nägele u. Obermiller), pp 185–194

  • Montero-Pau J, Serra M, Gómez A (2017) Diapausing egg banks, lake size, and genetic diversity in the rotifer Brachionus plicatilis Müller (Rotifera, Monogononta). Hydrobiologia 796:77–91

    Article  CAS  Google Scholar 

  • Orsini L, Schwenk K, De Meester L, Colbourne JK, Pfrender ME, Weider LJ (2013) The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol Evol 28:274–282. https://doi.org/10.1016/j.tree.2013.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsini L et al (2016) Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure. Mol Ecol 25:6024–6038

    Article  PubMed  Google Scholar 

  • Pfrender ME, Lynch M (2000) Quantitative genetic variation in Daphnia: temporal changes in genetic architecture. Evolution 54:1502–1509

    Article  CAS  PubMed  Google Scholar 

  • Rogalski MA, Leavitt PR, Skelly DK (2017) Daphniid zooplankton assemblage shifts in response to eutrophication and metal contamination during the Anthropocene. Proc R Soc B 284:20170865

    Article  CAS  PubMed  Google Scholar 

  • Rother A, Pitsch M, Hülsmann S (2010) The importance of hatching from resting eggs for population dynamics and genetic composition of Daphnia in a deep reservoir. Freshw Biol 55:2319–2331. https://doi.org/10.1111/j.1365-2427.2010.02441.x

    Article  Google Scholar 

  • Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67(3):893–921

    Article  Google Scholar 

  • Urban MC et al (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23:311–317. https://doi.org/10.1016/j.tree.2008,02.007

    Article  PubMed  Google Scholar 

  • Vanoverbeke J, De Meester L (2009) Within season short-term hatching delays suggest risk-spreading behaviour in populations of the freshwater cladoceran Daphnia. Ecoscience 16:441–451

    Article  Google Scholar 

  • Vanoverbeke J, De Meester L (2010) Clonal erosion and genetic drift in cyclical parthenogens–the interplay between neutral and selective processes. J Evol Biol 23:997–1012

    Article  CAS  PubMed  Google Scholar 

  • Vanoverbeke J, De Gelas K, De Meester L (2007) Habitat size and the genetic structure of a cyclical parthenogen, Daphnia magna. Heredity 98:419–426

    Article  CAS  PubMed  Google Scholar 

  • Vanschoenwinkel B, De Vries C, Seaman M, Brendonck L (2007) The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos 116:1255–1266. https://doi.org/10.1111/j.0030-1299.2007.15860.x

    Article  Google Scholar 

  • Vanschoenwinkel B, Gielen S, Vandewaerde H, Seaman M, Brendonck L (2008) Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31:567–577

    Article  Google Scholar 

  • Verschuren D, Marnell LF (1997) Fossil zooplankton and the historical status of westslope cutthroat trout in a headwater lake of Glacier National Park. Mont Trans Am Fish Soc 126:21–34

    Article  Google Scholar 

  • Waterkeyn A, Pineau O, Grillas P, Brendonck L (2010) Invertebrate dispersal by aquatic mammals: a case study with nutria Myocastor coypus (Rodentia, Mammalia) in Southern France. Hydrobiologia 654:267–271

    Article  Google Scholar 

  • Wiggins GB, Mackay RJ, Smith IM (1980) Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiol Suppl 58:206

    Google Scholar 

  • Wolf HG, Carvalho GR (1989) Resting eggs of lake Daphnia II. In situ observations on the hatching of eggs and their contribution to population and community structure. Freshw Biol 22:471–478

    Article  Google Scholar 

Download references

Acknowledgements

AG was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen) during this study. This study was partly supported by the KU Leuven Research Fund projects PF/2010/007 and C16/2017/02. We thank the three anonymous reviewers whose comments helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora N. Geerts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Sabine Giessler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geerts, A.N., Moreau, K., Vanschoenwinkel, B. et al. The power of numbers: dynamics of hatching and dormant egg production in two populations of the water flea Daphnia magna. Aquat Ecol 53, 393–406 (2019). https://doi.org/10.1007/s10452-019-09697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09697-1

Keywords

Navigation