Skip to main content
Log in

Mayfly emergence along an oligotrophic Dinaric karst hydrosystem: spatial and temporal patterns, and species–environment relationship

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Mayfly emergence was studied in the Plitvice Lakes National Park (Croatia) monthly over a 2-year period in four habitats (springs, streams, mountainous rivers, tufa barriers) using monthly collections of emergence traps. A total of 12 mayfly taxa were recorded. Almost half of the collected specimens belonged to the genus Baetis Leach, 1815, which was recorded at every site, but we were unable to distinguish between two included species (B. rhodani and B. cf. nubecularis). Other abundant species were Centroptilum luteolum (Müller, 1776), Alainites muticus (Linnaeus, 1758), Habrophlebia lauta Eaton 1884, Paraleptophlebia submarginata (Stephens, 1835), Serratella ignita (Poda, 1761), Ephemera danica Müller, 1764 and Rhithrogena braaschi Jacob, 1974. The mayfly assemblages at all sites were dominated by species typical of the rhithral zone, but there was a shift in species composition along a longitudinal gradient (from 720 to 390 m a.s.l.) from dominance of eucrenal–epirhithral to metarhithral–hyporhithral elements and finally to appearance of metapotamal and littoral elements. Two environmental factors, maximum water temperature and mean pH, had the highest influence on the mayfly assemblages. Emergence mainly occurred between March and November and was related to the elevated water temperature. Emergence patterns of some species were in accordance with their typical Central European emergence patterns (e.g. S. ignita, H. lauta) while some others showed certain discrepancies (e.g. longer emergence period in Rh. braaschi and P. submarginata, one generation emergence in A. muticus and variable emergence patterns between the sites and between the two studied years in C. luteolum). The current study provides a significant contribution to the knowledge of mayfly ecology in karst freshwater habitats which forms a basis for further investigation and monitoring of mayflies in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Figure modified from Vilenica et al. (2014)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AQEM Consortium (2002) Manual for application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. Version 1.0, February 2002. Contract No: EVK1 CT1999‐00027

  • Bauernfeind E, Humpesch UH (2001) Die Eintagsfliegen Zentraleuropas—Bestimmung und Ökologie. Verlag NMW, Wien

    Google Scholar 

  • Bauernfeind E, Moog O (2000) Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422:71–83

    Article  Google Scholar 

  • Bauernfeind E, Soldán T (2012) The mayflies of Europe (Ephemeroptera). Apollo Books, Ollerup

    Google Scholar 

  • Bergman EA, Hilsenhoff WL (1978) Parthenogenesis in the mayfly genus Baetis (Ephemeroptera: Baetidae). Ann Entomol Soc Am 71:167–168

    Article  Google Scholar 

  • Berner L, Pescador ML (1988) The mayflies of Florida, Revised edition. University Presses of Florida, Gainesville

  • Bottová K, Derka T (2013) Life cycle and secondary production of mayflies and stoneflies in a karstic spring in the West Carpathians. Ann Zool Fennici 50(3):176–188

    Article  Google Scholar 

  • Brittain JE (1979) Emergence of Ephemeroptera from Øvre Heimdalsvatn, a Norwegian subalpine lake. In: Pasternak K, Sowa R (eds) Proceedings of the 2nd international conference on ephemeroptera. Panstwowe Wydawnictwo Naukowe, Warszawa-Kraków, pp 115–123

    Google Scholar 

  • Brittain JE (1982) Biology of mayflies. Annu Rev Entomol 27:119–147

    Article  Google Scholar 

  • Brittain JE (2008) Mayflies, biodiversity and climate change. In: Hauer FR, Stanford JA, Newell RL (eds) International advances in the ecology, zoogeography and systematics of mayflies and stoneflies. University of California Press, Berkeley, pp 1–14

    Google Scholar 

  • Brittain JE, Sartori M (2003) Ephemeroptera (Mayflies). In: Resh VH, Cardé RT (eds) Encylopedia of insects. Academic Press, Amsterdam, pp 373–380

    Google Scholar 

  • Buffagni A, Armanini DG, Cazzola M, Alba-Tercedor J, López-Rodríguez MJ, Murphy J, Sandin L, Schmidt-Kloiber A (2015) Dataset “Ephemeroptera”. www.freshwaterecology.info—the taxa and autecology database for freshwater organisms, version 6.0 (Accessed 1 Feb 2017)

  • Ciborowski JJH (1983) Influence of current velocity, density, and detritus on drift of two mayfly species (Ephemeroptera). Can J Zool 61:119–125

    Article  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER V6: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  • Clifford HF (1982) Life cycles of mayflies (Ephemeroptera), with special reference to voltinism. Quaest Entomol 18(1–4):15–90

    Google Scholar 

  • Conti L, Schmidt-Kloiber A, Grenouillet G, Graf W (2014) A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721:297–315

    Article  CAS  Google Scholar 

  • Corbet PS (1964) Temporal patterns of emergence in aquatic insects. Can Entomol 96:264–279

    Article  Google Scholar 

  • Davies IJ (1984) Sampling aquatic insect emergence. In: Downing JA, Rigler FH (eds) Methods for the assessment of secondary productivity in fresh waters, 2nd edn. Blackwell Scientific Publications, Oxford, pp 161–227

    Google Scholar 

  • Elliott JM, Humpesch UH, Macan TT (1988) Larvae of the British Ephemeroptera: a key with ecological notes. Scientific Publications of the Freshwater Biological Association No. 49, The Ferry House, Ambleside

  • Everall NC, Johnson MF, Wilby RL, Bennett CJ (2015) Detecting phenology change in the mayfly Ephemera danica: responses to spatial and temporal water temperature variations. Ecol Entomol 40(2):95–105

    Article  Google Scholar 

  • Fiance SB (1978) Effects of pH on the biology and distribution of Ephemerella funeralis (Ephemeroptera). Oikos 31:332–339

    Article  Google Scholar 

  • Gerhardt A (1990) Effects of subacute doses of cadmium on pH-stressed Leptophlebia marginata (L.) and Baetis rhodani Pictet (Insecta: Ephemeroptera). Environ Pollut 6:29–42

    Article  Google Scholar 

  • Habdija I, Primc-Habdija B, Matoničkin R, Kučinić M, Radanović I, Miliša M, Mihaljević Z (2004) Current velocity and food supply as factors affecting the composition of macroinvertebrates in bryophyte habitats in karst running water. Biologia 59(5):577–593

    Google Scholar 

  • Harper MP, Peckarsky BL (2006) Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change. Ecol Appl 16(2):612–621

    Article  PubMed  Google Scholar 

  • Hrovat M, Urbanič G, Sivec I (2014) Aquatic insects along environmental gradients in a karst river system: a comparative analysis of EPT larvae assemblage components. Int Rev Hydrobiol 99:1–14

    Article  Google Scholar 

  • Illies J (1971) Emergenz 1969 in Breitenbach, Schlitzer produktionsbiologische Studien (1) (Emergence 1969 on Breitenbach (Schlitz studies on productivity No. I)). Arch Hydrobiol 69:14–59

    Google Scholar 

  • Ivković M, Mičetić Stanković V, Mihaljević Z (2012) Emergence patterns and microhabitat preference of aquatic dance flies (Empididae; Clinocerinae and Hemerodromiinae) on a longitudinal gradient of barrage lake system. Limnologica 42(1):43–49

    Article  Google Scholar 

  • Ivković M, Kesić M, Mihaljević Z, Kúdela M (2014) Emergence patterns and ecological associations of some haematophagous blackfly species along an oligotrophic hydrosystem. Med Vet Entomol 28:94–102. doi:10.1111/mve.12019

    Article  PubMed  Google Scholar 

  • Ivković M, Miliša M, Baranov V, Mihaljević Z (2015) Environmental drivers of biotic traits and phenology patterns of Diptera assemblages in karst springs: the role of canopy uncovered. Limnologica 54:44–57

    Article  Google Scholar 

  • Jacob U (1986) Analysis of the Ephemeroptera-emergence of the Breitenbach near Shlitz/Hesse (F.R.G.). Arch Hydrobiol 107(2):215–248

    Google Scholar 

  • Maiolini B, Carolli M, Silveri L (2011) Ephemeroptera, Plecoptera and Trichoptera in springs in Trentino (south-eastern Alps). J Limnol 70(1):122–133. doi:10.3274/JL11-70-S1-09

    Article  Google Scholar 

  • Malicky H (1994) Emergence patterns of insects from a permanent stream in the Eu-mediterranean climate region (Trichoptera, Ephemeroptera, Plecoptera). Entomol Gen 18(3–4):131–144

    Article  Google Scholar 

  • Malicky H (2002a) A quantitative field comparison of different types of emergence traps in a stream: general, Trichoptera, Diptera (Limoniidae and Empididae). Ann Limnol Int J Limnol 38:133–149

    Article  Google Scholar 

  • Malicky H (2002b) A quantitative field comparison of emergence traps with open and covered bottoms in a stream: general and Trichoptera. Ann Limnol Int J Limnol 38:241–246

    Article  Google Scholar 

  • Merten EC, Snobl ZR, Wellnitz TA (2014) Microhabitat influences on stream insect emergence. Aquat Sci 76:165–172. doi:10.1007/s00027-013-0326-3

    Article  Google Scholar 

  • Moog O (2002) Fauna Aquatica Austriaca, Edition 2002. Wassserwirtschaftskataster, Bundesministerium für Land und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna

  • Müller-Liebenau I (1969) Revision der europäischen Arten der Gattung Baetis Leach, 1815 (Insecta, Ephemeroptera). In: Gewässer und Abwasser, vol 66/67, pp 95–101

  • Nebeker AV (1971) Effect of high winter water temperatures on adult emergence of aquatic insects. Water Res 5:777–783

    Article  Google Scholar 

  • Ogbeibu AE, Oribhabor BJ (2002) Ecological impact of river impoundment using benthic macroinvertebrates as indicator. Water Res 36:2427–2436

    Article  CAS  PubMed  Google Scholar 

  • Paetzold A, Tockner K (2005) Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence. J N Am Benthological Soc 24(2):395–402

    Article  Google Scholar 

  • Pešić V, Dmitrović D, Savić A, von Fumetti S (2016) Studies on eucrenal–hypocrenal zonation of springs along the river mainstream: a case study of a karst canyon in Bosnia and Herzegovina. Biologia 71(7):809–817

    Google Scholar 

  • Petrin Z (2011) Species traits predict assembly of mayfly and stonefly communities along pH gradients. Oecologia 167(2):513–524

    Article  PubMed  Google Scholar 

  • Previšić A, Kerovec M, Kučinić M (2007) Emergence and composition of Trichoptera from Karst Habitats, Plitvice Lakes Region, Croatia. Int Rev Hydrobiol 92(1):61–83. doi:10.1002/iroh.200510921

    Article  Google Scholar 

  • Ritter H (1990) Ephemeroptera emergence from a high mountain stream in Tyrol, Austria. In: Campbell IC (ed) Mayflies and stoneflies: life histories and biology. Kluwer, Dordrecht, pp 53–59

    Chapter  Google Scholar 

  • Sættem LM, Brittain JE (1985) Life cycles and emergence of Ephemeroptera and Plecoptera from Myrkdalsvatn, an oligotrophic lake in Western Norway. Aquat Insects 7(4):229–241. doi:10.1080/01650428509361223

    Article  Google Scholar 

  • Sandin L, Schmidt-Kloiber A, Svenning JC, Jeppesen E, Friberg N (2014) A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Curr Zool 60(2):221–232

    Article  Google Scholar 

  • Šegota T, Filipčić A (2003) Köppenova podjela klima i hrvatsko nazivlje. Geoadria 8(1):17–23 (in Croatian)

    Google Scholar 

  • Šemnički P, Previšić A, Ivković M, Čmrlec K, Mihaljević Z (2012) Tufa Barriers from a Caddisfly’s point of view: streams or lake outlets? Int Rev Hydrobiol 97(6):465–484. doi:10.1002/iroh.201101500

    Article  Google Scholar 

  • Sertić Perić M, Miliša M, Matoničkin Kepčija R, Primc-Habdija B, Habdija I (2011) Seasonal and fine-scale spatial drift patterns in tufa-depositing barrage hydrosystem. Fundam Appl Limnol 178(2):131–145

    Article  Google Scholar 

  • Špoljar M, Primc-Habdija B, Habdija I (2007) Transport of seston in the karstic hydrosystem of the Plitvice Lakes (Croatia). Hydrobiologia 579:199–209. doi:10.1007/s10750-006-0409-4

    Article  Google Scholar 

  • Statzner B, Resh VH (1993) Multiple-site and -year analyses of stream insect emergence: a test of ecological theory. Oecologia 96:65–79

    Article  PubMed  Google Scholar 

  • Stilinović B, Božičević S (1998) The Plitvice Lakes—a natural phenomenon in the middle of the Dinaric karst in Croatia. Eur Water 1(5):15–24

    Google Scholar 

  • Ter Braak CJF, Šmilauer P (1998) Canoco for Windows: Software for Canonical Community Ordination (Version 4.02). Centre for Biometry Wageningen, CPRO-DLO, Wageningen

    Google Scholar 

  • Tokeshi M (1985) Life-cycle and production of the burrowing mayfly, Ephemera danica: a new method of estimating degree-days for growth. J Anim Ecol 54:919–930

    Article  Google Scholar 

  • Udden JA (1914) Mechanical composition of clastic sediments. Bull Geol Soc Am 25:655–744

    Article  Google Scholar 

  • Vilenica M, Gattolliat J-L, Ivković M, Kučinić M, Mičetić Stanković V, Mihaljević Z, Sartori M (2014) The mayfly fauna (Insecta, Ephemeroptera) of the Plitvice Lakes National Park, Croatia. Nat Croat 23(2):349–363

    Google Scholar 

  • Vilenica M, Previšić A, Kučinić M, Gattolliat J-L, Sartori M, Mihaljević Z (2016a) Distribution and autecology of mayflies (Insecta, Ephemeroptera) in a Mediterranean River in the Western Balkans. Entomol News 126(1):19–35

    Article  Google Scholar 

  • Vilenica M, Previšić A, Ivković M, Popijač A, Vučković I, Kučinić M, Kerovec M, Gattolliat J-L, Sartori M, Mihaljević Z (2016b) Mayfly (Ephemeroptera, Insecta) community of the regulated perennial Mediterranean river system in the Western Balkans. Biologia 71(9):1038–1048. doi:10.1515/biolog-2016-0121

    Article  Google Scholar 

  • Wagner R, Schmidt HH (2004) Yearly discharge patterns determine species abundance and community diversity: analysis of a 25 year record from the Breitenbach. Arch Hydrobiol 161:511–540

    Article  Google Scholar 

  • Wagner R, Dapper T, Schmidt HH (2000) The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks. Hydrobiologia 422(423):143–152

    Article  Google Scholar 

  • Wagner R, Marxsen J, Zwick P, Cox EJ (2011) Central European Stream ecosystems: the long term study of the Breitenbach. Wiley, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Prof Mladen Kerovec for the provision of financial support, and Miljenko Ivković, for field assistance, without which this study would not have been possible. We also thank Dr. Adrian Plant for his helpful comments on language style and Miran Katar for his help with the artwork. Thanks to Dr. Ana Previšić, Dr. Helen Barber James and Dr. Jasna Lajtner for their comments and advice. We would also like to thank the reviewers for their useful comments and suggestions that markedly improved this manuscript. This research was conducted as a part of the following project: «Invertebrate taxonomy, ecology and biogeography of Croatian aquatic ecotones» (No. 119-1193080-3076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vilenica.

Additional information

Handling Editor: Michael T. Monaghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilenica, M., Ivković, M., Sartori, M. et al. Mayfly emergence along an oligotrophic Dinaric karst hydrosystem: spatial and temporal patterns, and species–environment relationship. Aquat Ecol 51, 417–433 (2017). https://doi.org/10.1007/s10452-017-9626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-017-9626-3

Keywords

Navigation