Skip to main content
Log in

Short-term effects of phosphorus addition and pH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Natural mires and forested peatlands are known to be very significant sources of dissolved organic carbon (DOC) to aquatic ecosystems. Peatland management operations (e.g., forestry operations, restoration of drained mires and peat mining) and extreme hydrological events may increase the DOC runoff. We hypothesized that an increase in phosphorus (P) leaching, together with near-neutral conditions in recipient lakes will accelerate decomposition of DOC that originates from acidic, nutrient-poor mire waters. The efficiency of DOC utilization was evaluated by measuring microbial respiration and bacterial production (BP) in short-term laboratory experiments with runoff waters from six boreal mire sites. Mere inorganic phosphorus (PO4-P) addition did not affect the rate of respiration or the proportion of decayed DOC. However, in the nutrient-poor bog waters, P addition slightly promoted BP and bacterial growth efficiency (BGE). In contrast, the elevation of pH alone, and the elevation of pH and PO4-P level together, caused a significant increase in respiration and in the proportion of decayed DOC, but did not affect net BP. Elevated pH alone, however, depressed BGE when compared to that under the combined elevation of pH and PO4-P. These results suggest that the increased P availability, e.g., after mire restoration, would slightly benefit bacterial net growth in P-limited waters. However, in near-neutral recipient lakes, the increased microbial decomposition of mire-originated DOC contributes more to carbon dioxide (CO2) supersaturation than potentially supporting detritus-based food chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arvola L, Tulonen T (1998) Effects of allochthonous dissolved organic matter and inorganic nutrients on the growth of bacteria and algae from a highly humic lake. Environ Int 24:509–520

    Article  CAS  Google Scholar 

  • Berggren M, Laudon H, Jansson M (2007) Landscape regulation of bacterial growth efficiency in boreal freshwaters. Glob Biogeochem Cycles. doi:10.1029/2006GB002844

    Google Scholar 

  • Berggren M, Laudon H, Jonsson A, Jansson M (2010) Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microb Ecol 60:894–902

    Article  CAS  PubMed  Google Scholar 

  • Bergström A-K, Jansson M (2000) Bacterioplankton production in humic Lake Örträsket in relation to input of bacterial cells and input of allochthonous organic carbon. Microb Ecol 39:101–115

    Article  PubMed  Google Scholar 

  • Chrzanowski TH, Kyle M, Elser JJ, Sterner RW (1996) Element ratios and growth dynamics of bacteria in an oligotrophic Canadian Shield lake. Aquat Microb Ecol 11:119–125

    Article  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Eiler A, Langenheder S, Bertilsson S, Tranvik LJ (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbiol 69:3701–3709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Einola E, Rantakari M, Kankaala P, Kortelainen P, Ojala A, Pajunen H, Mäkelä S, Arvola L (2011) Carbon pools and fluxes in a chain of five boreal lakes: a dry and wet year comparison. J Geophys Res. doi:10.1029/2010JG001636

    Google Scholar 

  • Farjalla VF, Marinho CC, Faria BM, Amado AM, Esteves FDA, Bozelli RL, Giroldo D (2009) Synergy of fresh and accumulated organic matter to bacterial growth. Microb Ecol 57:657–666

    Article  CAS  PubMed  Google Scholar 

  • Fenner N, Freeman C (2013) Carbon presevation in humic lakes; a hierarchical regulatory pathway. Glob Chang Biol 19:775–784

    Article  PubMed  Google Scholar 

  • Findlay S, Carlough L, Crocker MT, Gill HK, Meyer JL, Smith PJ (1986) Bacterial growth on macrophyte leachate and fate of bacterial production. Limnol Oceanogr 31:1335–1341

    Article  CAS  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic latch on a global carbon store. Nature 409:149

    Article  CAS  PubMed  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667

    Article  CAS  Google Scholar 

  • Granéli W, Lindell M, Tranvik L (1996) Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr 41:698–706

    Article  Google Scholar 

  • Humborg C, Smedberg E, Blomqvist S (2004) Nutrient variations in boreal and subarctic Swedish rivers: landscape control of land–sea fluxes. Limnol Oceanogr 49:1871–1883

    Article  CAS  Google Scholar 

  • Jansson M, Bergström A, Lymer D, Vrede K, Karlsson J (2006) Bacterioplankton growth and nutrient use efficiencies under variable organic carbon and inorganic phosphorus ratios. Microb Ecol 52:358–364

    Article  CAS  PubMed  Google Scholar 

  • Jansson M, Berggren M, Laudon H, Jonsson A (2012) Bioavailable phosphorus in humic headwater streams in boreal Sweden. Limnol Oceanogr 57:1161–1170

    Article  CAS  Google Scholar 

  • Joensuu S, Ahti E, Vuollekoski M (2002) Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scand J For Res 17:238–247

    Article  Google Scholar 

  • Jones RI (1992) The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 299:73–91

    Article  Google Scholar 

  • Jonsson A, Meili M, Bergström A-K, Jansson M (2001) Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden). Limnol Oceanogr 46:1691–1700

    Article  CAS  Google Scholar 

  • Kankaala P, Lopez Bellido J, Ojala A, Tulonen T, Jones RI (2013) Variable production by different pelagic energy mobilizers in boreal lakes. Ecosystems 16:1152–1164

    Article  CAS  Google Scholar 

  • Kirchman D, K’Nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol 49:599–607

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kortelainen P (1993) Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can J Fish Aquat Sci 50:1477–1483

    Article  CAS  Google Scholar 

  • Kortelainen P, Mattsson T, Finér L, Ahtiainen M, Saukkonen S, Sallantaus T (2006) Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquat Sci 68:453–468

    Article  CAS  Google Scholar 

  • Koskinen M, Sallantaus T, Vasander H (2011) Post-restoration development of organic carbon and nutrient leaching from two ecohydrologically different peatland sites. Ecol Eng 37:1008–1016

    Article  Google Scholar 

  • Kroer N (1993) Bacterial growth efficiency on natural dissolved organic matter. Limnol Oceanogr 38:1282–1290

    Article  CAS  Google Scholar 

  • Larsen S, Andersen T, Hessen DO (2011) The pCO2 in boreal lakes: organic carbon as a universal predictor? Glob Biogeochem Cycles. doi:10.1029/2010GB003864

    Google Scholar 

  • Lehtoranta J (2004) Benthic phosphorus release from sediment to water. In: Wassmann P, Olli K (eds) Drainage basin nutrient inputs and eutrophication: an integrated approach. University of Tromsø, Norway, pp 155–166

    Google Scholar 

  • Lennon JT, Pfaff LE (2005) Source and supply of terrestrial organic matter affects aquatic microbial metabolism. Aquat Microb Ecol 39:107–119

    Article  Google Scholar 

  • Lennon JT, Cottingham KL (2008) Microbial productivity in variable resource environments. Ecology 89:1001–1014

    Article  PubMed  Google Scholar 

  • Mattsson T, Kortelainen P, Räike A (2005) Export of DOM from boreal catchments: impacts of land use cover and climate. Biogeochemistry 76:373–394

    Article  CAS  Google Scholar 

  • Middelboe M, Søndergaard M (1993) Bacterioplankton growth yield: seasonal variations and coupling to substrate lability and β-glucosidase activity. Appl Environ Microbiol 59:3916–3953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieminen M (2003) Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland. Boreal Environ Res 8:53–59

    CAS  Google Scholar 

  • Nieminen M (2004) Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland. Silva Fennica 38:123–132

    Google Scholar 

  • Patrick WH, Khalid RA (1974) Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53–55

    Article  CAS  PubMed  Google Scholar 

  • Raymond PA, Hartman J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2009) Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl Environ Microbiol 75:1589–1596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sallantaus T, Kondelin H, Heikkilä R (2003) Hydrological problems associated with mire restoration. In: Heikkilä R, Lindholm T (eds) Biodiversity and conservation of boreal nature. The Finnish Environment Institute, Vantaa, pp 256–261

    Google Scholar 

  • Salonen K, Vähätalo A (1994) Photochemical mineralization of dissolved organic matter in lake Skjervatjern. Environ Int 20:307–312

    Article  CAS  Google Scholar 

  • Sikora LJ, Keeney DR (1983) Further aspects of soil chemistry under anaerobic conditions. In: Gore AJ (ed) Ecosystems of the world, Mires: Swamp, Bog, Fen and Moor. Elsevier, Amsterdam, pp 247–256

    Google Scholar 

  • Smith E, Prairie Y (2004) Bacterial metabolism and growth efficiency in lakes: the importance of phosphorus availability. Limnol Oceanogr 49:137–147

    Article  CAS  Google Scholar 

  • Sobek S, Algesten G, Bergström A, Jansson M, Tranvik LJ (2003) The catchment and climate regulation of pCO sub(2) in boreal lakes. Glob Chang Biol 9:630–641

    Article  Google Scholar 

  • Tahvanainen T, Haraguchi A (2013) Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. Eur J Soil Biol 54:41–47

    Article  CAS  Google Scholar 

  • Tulonen T (1993) Bacterial production in a mesohumic lake estimated from [14C]leucine incorporation rate. Microbial Ecol 26:201–217

    Article  CAS  Google Scholar 

  • Vadstein O, Olsen LM, Busch A, Andersen T, Reinertsen HR (2003) Is phosphorus limitation of planktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm study. FEMS Microb Ecol 46:307–316

    Article  CAS  Google Scholar 

  • Vasander H, Tuittila E-, Lode E, Lundin L, Ilomets M, Sallantaus T, Heikkilä R (2003) Status and restoration of peatlands in northern Europe. Wetl Ecol Manag 11:51–63

    Article  CAS  Google Scholar 

  • Vidal LO, Granéli W, Daniel CB, Heiberg L, Roland F (2011) Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes. J Plankton Res 33:1747–1756

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We want to thank Natural Heritage Services of Finland Pekka Vesterinen (Metsähallitus) for assistance in field work and Marja Noponen and Leena Pääkkönen for their help with laboratory analyses. The comments of two anonymous reviewers improved the manuscript. This study was funded by Maj and Tor Nessling foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Räsänen.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Räsänen, N., Kankaala, P., Tahvanainen, T. et al. Short-term effects of phosphorus addition and pH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires. Aquat Ecol 48, 435–446 (2014). https://doi.org/10.1007/s10452-014-9496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-014-9496-x

Keywords

Navigation