Skip to main content
Log in

Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

The aquatic and terrestrial realms differ in many physical properties that not only require specific physiological adaptations but also cause differences in dispersal options. We thus expect that life-history traits related to dispersal and colonization are under selection pressure because freshwater habitats are more isolated and thus more difficult to reach. We compared traits from European databases of three taxonomic groups along the passive–active dispersal gradient: plants (Plantes), snails (Mollusca: Gastropoda: Prosobranchia et Pulmonata) and hoverflies (Diptera: Syrphidae), all of which have both terrestrial and freshwater species (plants and snails) or early life stages (hoverflies). Aquatic taxa seem to be more successful long-distance dispersers than are terrestrial taxa. Our analysis also revealed lower numbers of seeds or eggs produced in the aquatic habitats. However, aquatic taxa often allocate resources to offspring guarding (vegetative propagules in plants, egg capsules in snails) and breeding-site selection (syrphids). Colonization of the aquatic realm is reinforced by increases in life span (plants), clonal spread (plants), shorter generation times (snails), selfing ability (marginal effect in pulmonate snails) or paedogenesis (two incidences in hoverflies, needs further studies). Probably, the variety of strategies reflects the different evolutionary backgrounds that elicit different combinations of trade-offs, but all traits also might increase invasibility of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott KC (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett 14:1158–1169

    Article  PubMed  Google Scholar 

  • Achterkamp B, Ottenheim M, Beukeboom LW, Brakefield PM (2000) Paedogenesis in Eristalis arbustorum (Diptera: Syrphidae). Proc Sect Experim Appl Entomol, Netherl Entomol Soc 11:83–97

    Google Scholar 

  • Almohamad R, Verheggen F, Francis F, Haubruge E (2007) How does the age of hoverfly females affect their reproduction? Commun Agric Appl Biol Sci 72:503–508

    PubMed  Google Scholar 

  • Almohamad R, Verheggen FJ, Haubruge E (2009) Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): a review. Biotech Agron Soc Environ 13:467–481

    Google Scholar 

  • Altermatt F, Schreiber S, Holyoak M (2011) Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92:859–870

    Article  PubMed  Google Scholar 

  • Boedeltje G, Bakker JP, Bekker RM, Van Groenendael JM, Soesbergen M (2003) Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J Ecol 91:855–866

    Article  Google Scholar 

  • Bonn S, Poschlod P, Tackenberg O (2000) Diasporus—a database for diaspore dispersal—concept and applications in case studies for risk assessment. Z Ökol Natursch 9:85–97

    Google Scholar 

  • Castella E, Speight MCD (1996) Knowledge representation using fuzzy coded variables: an example based on the use of Syrphidae (Insecta, Diptera) in the assessment of riverine wetlands. Ecol Model 85:13–25

    Article  Google Scholar 

  • Cook CDK (1996) The aquatic plant book. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Correa SB, Winemiller KO, Lopez-Fernandez H, Galetti M (2007) Evolutionary perspectives on seed consumption and dispersal by fishes. Bioscience 57:748–756

    Article  Google Scholar 

  • Coulton HD, Pennymaker M (1934) The results of twenty years of self-fertilization in the snail Lymnaea columella Say. Am Nat 68:129–136

    Article  Google Scholar 

  • Ellenberg H (1992) Zeigerwerte der Gefäßpflanzen (ohne Rubus). In: Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (eds) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica vol. 18. Goltze, Göttingen, pp 9–166

  • Falkner G, Obrdlik P, Castella E, Speight MCD (2001) Shelled Gastropoda of western Europe. Friedrich Held Gesellschaft, München

    Google Scholar 

  • Fox JA, Dybdahl MF, Jokela CM, Lively J (1996) Genetic structure of coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum). Evolution 50:1541–1548

    Article  Google Scholar 

  • Gardner SN, Mangel M (1999) Modeling investments in seeds, clonal offspring, and translocation in a clonal plant. Ecology 80:1202–1220

    Article  Google Scholar 

  • Heger TJ, Mitchell EAD, Todorov M, Golemansky V, Lara E, Leander BS, Pawlowski J (2010) Molecular phylogeny of euglyphid testate amoebae (Cercozoa: Euglyphida) suggests transitions between marine supralittoral and freshwater/terrestrial environments are infrequent. Mol Phylogenet Evol 55:113–122

    Article  CAS  PubMed  Google Scholar 

  • Hemptinne J-L, Dixon AFG, Doucet J-L, Petersen J-E (1993) Optimal foraging by hoverflies (Diptera: Syrphidae) and ladybirds (Coleoptera: Coccinellidae): mechanisms. Eur J Entomol 90:451–455

    Google Scholar 

  • Henry P-Y, Vimond L, Lenormand T, Jarne P (2006) Is delayed selfing adjusted to chemical cues of density in the freshwater snail Physa acuta? Oikos 112:448–455

    Article  Google Scholar 

  • Hintze C, Heydel F, Hoppe C, Cunze S, König A, Tackenberg O (2013) D3: the dispersal and diaspore database—baseline data and statistics on seed dispersal—perspect. Plant Ecol Evol Syst 15:180–192

    Article  Google Scholar 

  • Honnay O, Bossuyt B, Verheyen K, Butaye J, Jacquemyn H, Hermy M (2002) Ecological perspectives for the restoration of plant communities in European temperate forests. Biodivers Conserv 11:213–242

    Article  Google Scholar 

  • Horvath TG, Lamberti G (1997) Drifting macrophytes as a mechanism for zebra mussel (Dreissena polymorpha) invasion of lake-outlet streams. Am Midl Nat 138:29–36

    Article  Google Scholar 

  • Ibrahim IA, Gad AM (1975) The occurrence of paedogenesis in Eristalis larvae (Diptera Syrphidae). J Med Entomol 12:268–268

    CAS  PubMed  Google Scholar 

  • Kappes H, Haase P (2012) Slow, but steady: dispersal velocity and strategies of freshwater molluscs. Aquat Sci 74:1–14

    Article  Google Scholar 

  • Kappes H, Sundermann A, Haase P (2011) Distant land use affects terrestrial and aquatic habitats of high naturalness. Biodivers Conserv 20:2297–2309

    Article  Google Scholar 

  • Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20:495–502

    Article  PubMed  Google Scholar 

  • Kerney MP, Cameron RAD, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Paul Parey, Hamburg

    Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020

    Article  Google Scholar 

  • Kleyer M, Bekker RM, Knevel IC et al (2008) The LEDA traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274

    Article  Google Scholar 

  • Klimeš L, Klimešová J, Hendriks R, van Groenendael J (1997) Clonal plant architecture: a comparative analysis of form and function. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys Publishers, Leiden, pp 1–29

    Google Scholar 

  • Klimešová J, de Bello F (2009) CLO-PLA: the database of clonal and bud bank traits of Central European flora. J Veg Sci 20:511–516

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR – Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Landwirtschaftsverlag, Münster

    Google Scholar 

  • Kobialka H, Schwer H, Kappes H (2009) Rote Liste der gefährdeten Schnecken und Muscheln (Mollusca: Gastropoda et Bivalvia) in Nordrhein-Westfalen. 3. Fassung 2009. Mitt Deutsch Malakozool Ges 82:3–30

    Google Scholar 

  • Kurokawa H, Peltzer D, Wardle D (2010) Plant traits, leaf palatability and litter decomposability for co-occurring woody species differing in invasion status and nitrogen fixation ability. Funct Ecol 24:513–523

    Article  Google Scholar 

  • Latzel V, Klimesova J, Dolezal J, Pysek P, Tackenberg O, Prach K (2011) The association of dispersal and persistence traits of plants with different stages of succession in Central European man-made habitats. Folia Geobot 46:289–302

    Article  Google Scholar 

  • Maltz TK, Sulikowska-Drozd A (2008) Life cycles of clausilids in Poland—knowns and unknowns. Ann Zool 58:857–880

    Article  Google Scholar 

  • McCracken GF, Selander RK (1980) Self-fertilization and monogenic strains in natural populations of terrestrial slugs. Proc Nat Acad Sci USA 77:684–688

    Article  CAS  PubMed  Google Scholar 

  • McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302

    Article  PubMed  Google Scholar 

  • Moorkens EA, Killeen IJ (2009) Database of association with habitat and environmental variables for non-shelled slugs and bivalves of Britain and Ireland. Irish Wildlife Manuals, No. 41. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland

  • Nolte AW (2011) Dispersal in the course of an invasion. Mol Ecol 20:1803–1804

    Article  PubMed  Google Scholar 

  • Öster M, Ask K, Römermann C, Tackenberg O, Eriksson O (2009) Plant colonization of ex-arable fields from adjacent species-rich grasslands: the importance of dispersal versus recruitment ability. Agric Ecosyst Environ 130:93–99

    Article  Google Scholar 

  • Peck LS (2011) Organisms and responses to environmental change. Mar Genomics 4:237–243

    Article  PubMed  Google Scholar 

  • Pérez-Harguindeguy N, Díaz S, Vendramini F, Cornelissen JHC, Gurvich DE, Cabido M (2003) Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642–650

    Article  Google Scholar 

  • Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91:1617–1627

    Article  PubMed  Google Scholar 

  • Pianka ER (1970) On r- and K-selection. Am Nat 104:592–597

    Article  Google Scholar 

  • Pinceel J, Jordaens K, Houtte N, Bernon G, Backeljau T (2005) Population genetics and identity of an introduced terrestrial slug: Arion subfuscus s.l. in the north-east USA (Gastropoda, Pulmonata, Arionidae). Genetica 125:155–171

    Article  PubMed  Google Scholar 

  • Pollux BJA (2011) The experimental study of seed dispersal by fish (ichthyochory). Freshw Biol 56:197–212

    Article  Google Scholar 

  • Poschlod P, Kleyer M, Jackel AK, Dannemann A, Tackenberg O (2003) BIOPOP—a database of plant traits and Internet application for nature conservation. Folia Geobot 38:263–271

    Article  Google Scholar 

  • Roll U, Dayan T, Simberloff D, Mienis HK (2009) Non-indigenous land and freshwater gastropods in Israel. Biol Invas 11:1963–1972

    Article  Google Scholar 

  • Ruhl JB (2010) Assisted colonization: facilitate migration first. Science 330:1317–1318

    Article  CAS  PubMed  Google Scholar 

  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol 23:137–154

    Article  Google Scholar 

  • Schleicher A, Peppler-Lisbach C, Kleyer M (2011) Functional traits during succession: is plant community assembly trait-driven? Preslia 83:347–370

    Google Scholar 

  • Selander RK, Kaufman DW (1973) Self-fertilization and genetic population structure in a colonizing land snail. Proc Nat Acad Sci USA 70:1186–1190

    Article  CAS  PubMed  Google Scholar 

  • Sosnová M, van Diggelen R, Klimešová J (2010) Distribution of clonal growth forms in wetlands. Aquat Bot 92:33–39

    Article  Google Scholar 

  • Speight MCD, Monteil C, CastellaE, Sarthou J-P (2010) StN 2010. In: Speight MCD, Castella E, Sarthou J-P, Monteil C (ed) Syrph the Net on CD, Issue 7. The database of European Syrphidae. Syrph the Net Publications, Dublin

  • Statzner B, Hoppenhaus K, Arens M-F, Richoux P (1997) Reproductive traits, habitat use and templet theory: a synthesis of world-wide data on aquatic insects. Freshw Biol 38:109–135

    Article  Google Scholar 

  • Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205

    Article  Google Scholar 

  • Travis SE, Proffitt CE, Ritland K (2004) Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecol Appl 14:1189–1202

    Article  Google Scholar 

  • Tsitrone A, Jarne P, David P (2003) Delayed selfing and resource reallocations in relation to mate availability in the freshwater snail Physa acuta. Am Nat 162:474–488

    Article  PubMed  Google Scholar 

  • Umetsu CA, Antoniazi Evangelista HB, Thomaz SM (2012) The colonization, regeneration, and growth rates of macrophytes from fragments: a comparison between exotic and native submerged aquatic species. Aquat Ecol 46:443–449

    Article  Google Scholar 

  • Vermeij GJ (2000) Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol J Linn Soc 70:541–554

    Article  Google Scholar 

  • Watson JR, Hays CG, Raimondi PT, Mitarai S, Dong C, McWilliams JC, Blanchette CA, Caselle JE, Siegel DA (2011) Currents connecting communities: nearshore community similarity and ocean circulation. Ecology 92:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financed by the research funding program “LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-oekonomischer Exzellenz” of Hesse’s Ministry of Higher Education, Research and the Arts. HK in part received financial support from the Netherlands Organisation for Scientific Research (NWO–ALW 821.01.002) while writing. OT received financial support from the DFG (TA 311/3). We also would like to thank Editor in Chief Piet Spaak (Eawag Dübendorf), Łukasz Głowacki (University Łódź), and an anonymous reviewer, for their highly valued comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Kappes.

Additional information

Handling Editor: Piet Spaak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappes, H., Tackenberg, O. & Haase, P. Differences in dispersal- and colonization-related traits between taxa from the freshwater and the terrestrial realm. Aquat Ecol 48, 73–83 (2014). https://doi.org/10.1007/s10452-013-9467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-013-9467-7

Keywords

Navigation