Skip to main content
Log in

The dynamics of microbial and herbivorous food webs in a coastal sea with special reference to intermittent nutrient supply from bottom intrusion

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Seasonal changes in abundance of planktonic microorganisms, together with some physico-chemical variables, were monitored monthly from May 1999 to March 2002 in the surface water of a coastal bay where nutrients are mainly supplied by intermittent intrusions of deeper water (bottom intrusion). No significant bottom intrusion was detected in 1999 but large or frequent bottom intrusions were found from June to October in 2000, and again from mid-June only to late July in 2001. These results indicate that there is a different nutrient supply every year, and peaks in the abundance of dominant eukaryotic phytoplankton (diatoms and dinoflagellates) roughly corresponded to the occurrences of bottom intrusions. By contrast, there was a cyclic seasonal pattern of autotrophic picoplankton (APP) cell density, which reached maxima in August of every year at very similar levels (4.0–5.0 × 105 cells ml−1). Thus, the seasonal abundance of APP was apparently independent of the occurrence of bottom intrusions. Seasonal changes in cell densities of heterotrophic bacteria showed similar trends to the APP, and temperature-dependent growth of both was indicated. The present study suggests that the matter cycling in the bay varies as a result of shifts in the dominant food linkages, from a microbial food web to a herbivorous food web, due to intermittent nutrient supplies from bottom intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agawin N.S.R., Duarte C.M. and Agusti S. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45: 591–600.

    CAS  Google Scholar 

  • Azam F., Fenchel T., Field J.G., Gray J.S., Meyer-Reil L.A. and Thingstad F. 1983. The role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Beer T. 1983. Bounary layers. In: Beer T. (ed.), Environmental Oceanography. Pergamon Press, Oxford, UK, 117–129.

    Google Scholar 

  • Bell T. and Kalff J. 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46: 1243–1248.

    Article  Google Scholar 

  • Caron D.A. 1983. Technique for enumeration of heterotrophic and photorophic nanoplankton, using epifluoresence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491–498.

    PubMed  CAS  Google Scholar 

  • Crosbie N.D. and Furnas M.J. 2001. Net growth rates of picocyanobacteria and nano-/microphytoplankton inhabiting shelf waters of the central (17S) and southern (20S) Great Barrier Reef. Aquat. Microb. Ecol. 24: 209–224.

    Google Scholar 

  • Currie D.J. and Kalff J. 1984a. Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb. Ecol. 10: 205–216.

    CAS  Google Scholar 

  • Currie D.J. and Kalff J. 1984b. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    CAS  Google Scholar 

  • Currie D.J. and Kalff J. 1984c. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    CAS  Google Scholar 

  • Dolan J.R. and Simek K. 1998. Ingestion and digestion of an autotrophic picoplankter, Synechococcus, by a heterotrophic nanoflagellate, Bodo saltans. Limnol. Oceanogr. 43: 1740–1746.

    Google Scholar 

  • Dolan J.R. and Simek K. 1999. Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellates: Analysis of food vacuole contents. Limnol. Oceanogr. 44: 1565–1570.

    Google Scholar 

  • Ducklow H.W., Duncan A.P., Williams P.J.L. and Davies J.M. 1986. Bacterioplankton: A sink for carbon in a coastal marine plankton community. Science 232: 865–867.

    PubMed  CAS  Google Scholar 

  • Duarte C.M., Agusti S., Gasol J.M., Vaque D., Vazquez-Dominguez E. 2000. Effects of nutrient supply on the biomass structure of planktonic communities: an experimental test on a Mediterranean coastal community. Mar. Ecol. Prog. Ser. 206: 87–85.

    Google Scholar 

  • El Hag A.G.D. and Fogg G.E. 1986. The distribution of coccoid blue-green algae (Cyanobacteria) in the Menai Straits and the Irish Sea. Br. Phycol. J. 21: 45–54.

    Google Scholar 

  • Hashimoto T. and Nakano S. 2003. Effect of nutrient limitation on abundance and growth of phytoplankton in a Japanese pearl farm. Mar. Ecol. Prog. Ser. 29: 43–50.

    Google Scholar 

  • Hall J.A. and Vincent W.F. 1990. Vertical and horizontal structure in the picoplankton communities of a coastal upwelling system. Mar. Biol. 106: 465–471.

    Google Scholar 

  • Houghton R.W. and Mensah M.A. 1978. Physical aspects and biological consequences of Ghanian coastal upwelling.. In: Boje R. and Tomczak M. (eds), Upwelling Ecosystems. Springer-Verlag, New York, USA, 167–180.

    Google Scholar 

  • Kaneda A., Takeoka H. and Koizumi Y. 2002a. Periodic occurrence of diurnal signal of ADCP backscatter strength in Uchiumi Bay, Japan. Estuar Coast Shelf Sci 55: 323–330.

    Google Scholar 

  • Kaneda A., Takeoka H., Nagaura E. and Koizumi Y. 2002b. Periodic intrusion of cold water from the Pacific Ocean into the bottom layer of the Bungo Channel, Japan. J. Oceanogr. 58: 547–556.

    Google Scholar 

  • Kirchman D.L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28: 255–271.

    CAS  Google Scholar 

  • Koizumi Y. 1991. A process of water exchange in Shitaba Bay during the phenomenon of Kyucho. Bull. Coast. Oceanogr. 29: 82–90 (in Japanese with English abstract).

    Google Scholar 

  • Koizumi Y. and Kohno Y. 1994. An influence of the Kyucho on a mechanism of diatom growth in Shitaba Bay in summer. Bull. Coast. Oceanogr. 32: 81–89 (in Japanese with English abstract).

    Google Scholar 

  • Koizumi Y., Nishikawa S., Yakushiji R. and Uchida T. 1997. Germination of resting station cells and growth of vegetative cells in diatoms caused by kyucho events. Bull. Coast. Oceanogr. 61: 275–287 (in Japanese with English abstract).

    Google Scholar 

  • Koshikawa H., Harada S., Watanabe M., Sato K. and Akehata T. 1996. Relative contribution of bacterial and photosynthetic production to metazooplankton as carbon sources. J. Plankton Res. 18: 2269–2281.

    Google Scholar 

  • Kumar S.K., Vincent W.F., Austin P.C. and Wake G.C. 1991. Picoplankton and marine food chain dynamics in a varible mixed-layer: a reaction-diffusiion model. Ecol. Mod. 57: 193–219.

    CAS  Google Scholar 

  • Legendre L. and Rassoulzadegan R. 1995. Plankton and nutrient dynamics in marine waters. Ophelia 41: 153–172.

    Google Scholar 

  • Murphy J. and Riley P. 1962. A modified single solution method for the determination of phosphorus in natural waters. Anal. Chim. Acta. 27: 31–36.

    CAS  Google Scholar 

  • Painting S.J., Lucas M.I., Peterson W.T., Brown P.C., Hutchings L. and Mitchell-Innes B.A. 1993. Dynamics of bacterioplankton, phytoplankton and mesozooplankton communities during the development of an upwelling plume in the southern Benguela. Mar. Ecol. Prog. Ser. 100: 35–53.

    Google Scholar 

  • Painting S.J., Moloney C.L. and Lucas M.I. 1993. Simulation and field measurements of phytoplankton-bacteria-zooplankton interactions in the southern Benguela. Mar. Ecol. Prog. Ser. 100: 55–69.

    Google Scholar 

  • Pitcher G.C., Walker D.R., Mitchell-Innes B.A. and Moloney C.L. 1991. Short-term variability during an anchor station study in the southern Benguela upwelling system: phytoplankton dynamics. Prog. Oceanogr. 28: 39–64.

    Google Scholar 

  • Porter K.G. and Feig Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Sanders R.W., Caron D.A. and Berninger U.G. 1992. Relationship between bacteria and heterotrophic nanoplankton in marine and fresh waters: an inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1–14.

    Google Scholar 

  • Sherr B.F., Sherr E.B. and Albright L.J. 1987. Bacteria: Link or sink? Science 235: 88.

    Google Scholar 

  • Simpson J.H. and Hunter J.R. 1974. Fronts in the Irish Sea. Nature 250: 404–406.

    Google Scholar 

  • Smith R.E.H. and Kalff J. 1982. Size-dependent phosphorus uptake kinetics and cell quata in phytoplankton. J. Phycol. 18: 275–284.

    CAS  Google Scholar 

  • Stockner J.G. and Antia N.J. 1986. Algal picoplankton from marine and freshwater ecoysystems: a multidisciplinary perspective. Can. J. Aquat. Fish Sci. 43: 2472–2503.

    Article  Google Scholar 

  • Takeoka H., Akiyama H. and Kikuchi T. 1993. The Kyucho in the Bungo Channel, Japan. — Periodic intrusion of oceanic warm water. J. Oceanogr. 49: 369–382.

    Google Scholar 

  • Takeoka H., Kaneda A. and Anami H. 1997. Tidal fronts induced by horizontal contrast of vertical mixing efficiency. J. Oceanogr. 53: 563–570.

    Google Scholar 

  • Takeoka H., Koizumi Y. and Kaneda A. 2000. Year-to-year variation of a kyucho and a bottom intrusion in the Bungo Channel, Japan. In: Yanagi T. (ed.), Interactions between Estuaries, Coastal Seas and Shelf Seas. Terrapub, Tokyo, Japan, 197–215.

    Google Scholar 

  • Takeoka H. and Yoshimura T. 1988. The Kyucho in Uwajima Bay. J. Oceanogr. 44: 6–16.

    Google Scholar 

  • Tomaru Y., Kawabata Z. and Nakano S. 2000. Consumption of picoplankton by the bivalve larvae of Japanease pearl oyster Pinctada fucata martensii. Mar. Ecol. Prog. Ser. 192: 195–202.

    Google Scholar 

  • Tomaru Y., Udaka N., Kawabata Z. and Nakano S. 2002. Seasonal change of seston size distribution and phytoplankton composition in bivalve pearl oyster Pinctada fucata martensii culture farm. Hydrobiologia 481: 181–185.

    Google Scholar 

  • Walsh J.J., Kelley J.C., Whitledge T.E., Maclsaac J.J. and Huntsman S.A. 1974. Spin-up of the Baja California upwelling ecosystem. Limnol. Oceanogr. 19: 553–572.

    CAS  Google Scholar 

  • Walsh J.J., Whitledge T.E., Barvenik F.W., Wirick C.D., Howe S.O., Esaias W.E. and Scott J.T. 1978. Wind events and food chain dynamics within the New York Bight. Limnol. Oceanogr. 23: 659–683.

    CAS  Google Scholar 

  • Watson S. and McCauley E. 1988. Contrasting patterns of net- and nanoplankton production and biomass among lakes. Can. J. Aquat. Fish Sci. 45: 915–920.

    Article  Google Scholar 

  • Weisse T. 1993. namics of autotrophic picoplankton in marine and freshwater ecosystems. Adv.Microb.Ecol. 13: 327–370.

    Google Scholar 

  • Yanagi T.and Ohba T. 1985. Tidal front in the Bungo Channel. Bull. Coast. Oceanogr. 23: 19–25 (in Japanese).

    Google Scholar 

  • Yoder J.A., Atkinson L.P., Lee T.N., Kim H.H. and Goldman C.R. 1981. Role of Gulf Stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf. Limnol. Oceanogr. 26: 1103–1110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, Si., Tomaru, Y., Katano, T. et al. The dynamics of microbial and herbivorous food webs in a coastal sea with special reference to intermittent nutrient supply from bottom intrusion. Aquat Ecol 38, 485–493 (2005). https://doi.org/10.1007/s10452-005-0441-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-005-0441-x

Key words

Navigation