Skip to main content
Log in

Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Zeolites are widely employed in the industrial drying of gases by Temperature Swing Adsorption (TSA). In a typical TSA process, the adsorbent is packed in a fixed bed, which is sequentially subjected to a “cold” feed (adsorption) and a hot flush (desorption). Due to the hydrothermal stress, adsorbents may suffer from reduced drying capacity in long-term service. The aim of this work is to assess the impact of thermal aging of two zeolite materials (LTA and CHA) having similar pore openings but different Si/Al ratios. We examined how simulated thermal aging affected porous texture, coke deposition and water vapor adsorption equilibrium and kinetics. Both zeolites showed reduced uptake of probe molecules (N2 at 77 K and CO2 at 273 K) and water vapor (303 K) when subjected to simulated thermal aging. In Fourier-Transform Infrared Spectroscopy (FTIR) analyses, only the aged LTA zeolite showed bands related to the presence of aromatic compounds. Water vapor adsorption uptake decreased 28.6% and 18.4% for LTA and CHA at 30 mbar, respectively. Kinetic studies indicate a reduction in water diffusion coefficient after the aging cycles. Although LTA has a significantly higher affinity for water as compared to CHA, the latter is much more resistant to hydrothermal aging with comparatively faster water diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Conglomerate external surface area per unit volume (m1)

\(C_{ps}\) :

Solid specific heat capacity (J kg1 K1)

\(C_{pw}\) :

Water specific heat capacity (J kg1 K1)

\(\overline{{C_{p} }}\) :

Specific heat capacity average (J kg1 K1)

\(D_{\mu }\) :

Diffusion coefficient (m2 s1)

\(D_{\mu }^{0}\) :

Corrected diffusion coefficient (m2 s1)

\(D_{\mu , b}^{0}\) :

Diffusion coefficient in a reference temperature (m2 s1)

\(\Delta H_{ads}\) :

Adsorption enthalpy (J mol1)

\(\Delta t\) :

Time interval to achieve the final pressure (s)

\(E_{a}\) :

Adsorption activation energy (J mol1 K1)

\(h_{f}\) :

Heat transfer coefficient (W m2 K1)

P:

Pressure (Pa)

\(P_{b}\) :

Phase bulk pressure (Pa)

\(P_{bi}\) :

Phase bulk initial pressure (Pa)

\(P_{f}\) :

Final pressure (Pa)

\(P_{i}\) :

Initial pressure (Pa)

q:

Adsorbed amount (mol kg1)

\(q_{s}\) :

Maximum adsorbed amount (mol kg1)

\(\overline{q}\) :

Volumetric average adsorbed amount (mol kg1)

r:

Radial coordinate (m)

R:

Particle radius (m)

\(R_{IG}\) :

Universal gas constant (J mol1 K1)

\(\rho_{s}\) :

Solid specific volume (kg m3)

t:

Time (s)

T:

Temperature (K)

\(T_{b}\) :

Phase bulk temperature (K)

References

  1. Mokhatab, S., Poe, W.A., Mak, J.Y.: Natural gas dehydration and mercaptans removal. In: Mokhatab, S., Poe, W.A., Mak, J.Y. (eds.) Handbook of Natural Gas Transmission and Processing: Principles and Practices, pp. 307–348. Gulf Professional Publishing, Cambridge (2019)

    Chapter  Google Scholar 

  2. Nastaj, J., Ambrozek, B.: Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents. Chem. Eng. Process. 96, 44–53 (2015)

    Article  CAS  Google Scholar 

  3. Haque, M.E., Xu, Q., Palanki, S.: Glycol loss minimization for a natural gas dehydration plant under upset conditions. Ind. Eng. Chem. Res. 58, 1994–2008 (2019)

    Article  CAS  Google Scholar 

  4. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P.L., Maurin, G.: Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd edn. Elsevier/Academic Press, Amsterdam (2014)

    Google Scholar 

  5. Berg, F., Pasel, F., Eckardt, T., Bathen, D.: Temperature swing adsorption in natural gas processing: a concise overview. Chem. Biol. Eng. Rev. 3, 59–71 (2019)

    Google Scholar 

  6. Pham, T.D., Liu, Q., Lobo, R.F.: Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 29, 832–839 (2013)

    Article  CAS  Google Scholar 

  7. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  8. Thomas, W.J., Crittenden, B.: Adsorption Technology & Design. Butterworth Heinemann, Lymington (1998)

    Google Scholar 

  9. Santiago, R.G., Santos, B.F., Lima, I.G., Moura, K.O., Melo, D.C., Grava, W.M., Bastos-Neto, M., de Lucena, S.M.P., de Azevedo, D.C.S.: Investigation of premature aging of zeolites used in the drying of gas streams. Chem. Eng. Commun. 206, 1378–1385 (2019)

    Google Scholar 

  10. Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  11. Siqueira, R.M., Vilarrasa-García, E., Torres, A.E.B., de Azevedo, D.C.S., Bastos-Neto, M.: Simple procedure to estimate mass transfer coefficients from uptake curves on activated carbons. Chem. Eng. Technol. 41, 1622–1630 (2018)

    Article  Google Scholar 

  12. Kärger, J., Ruthven, D.M.: Diffusion in nanoporous materials: Fundamental principles, insights and challenges. New. J. Chem. 40, 4027–4048 (2016)

    Article  Google Scholar 

  13. Wang, J.-Y., Mangano, E., Brandani, S., Ruthven, D.M.: A review of common practices in gravimetric and volumetric adsorption kinetic experiments. Adsorption 27, 295–318 (2021)

    Article  CAS  Google Scholar 

  14. Database of zeolite structure. Structure Commission of the International Zeolite Association (IZA-SC). http://www.iza-structure.org/databases/ (2017). Accessed 30 March 2021

  15. Zamechek, W.: Determination of the Elemental Compositor of Zeolitic Materials: Verified Syntheses of Zeolitic Materials, pp. 51–53. Elsevier, Amsterdam (2001)

    Book  Google Scholar 

  16. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  17. Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57, 106–113 (2012)

    Article  CAS  Google Scholar 

  18. Seabra, R., Ribeiro, A.M., Gleichmann, K., Ferreira, A.F.P., Rodrigues, A.E.: Adsorption equilibrium and kinetics of carbon dioxide, methane and nitrogen on binderless zeolite 4A adsorbents. Microporous Mesoporous Mater. 277, 105–114 (2019)

    Article  CAS  Google Scholar 

  19. Tounsi, H., Mseddi, S., Djemel, S.: Preparation and characterization of Na-LTA zeolite from Tunisian sand and aluminum scrap. Phys. Procedia 2, 1065–1074 (2009)

    Article  CAS  Google Scholar 

  20. Valiullin, R., Kärger, J., Cho, K., Choi, M., Ryoo, R., et al.: Dynamics of water diffusion in mesoporous zeolites. Microporous Mesoporous Mater. 142, 236–244 (2011)

    Article  CAS  Google Scholar 

  21. Zavareh, S., Farrokhzad, Z., Darvishi, F.: Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicol. Environ. Saf. 155, 1–8 (2018)

    Article  CAS  Google Scholar 

  22. Moreira, J.C., Santa, R.A.A.B., Miraglia, G.L., Soares, C., Riella, H.G.: Evaluation of different reaction systems to obtain zeolite 4A via reverse microemulsion. Microporous Mesoporous Mater. 279, 262–270 (2019)

    Article  CAS  Google Scholar 

  23. Kim, W., Choi, D., Kim, S.:  Sonochemical synthesis of zeolite A from metakaolinite in NaOH solution. Mater. Trans. 51(9), 1694-–1698 (2010) 

    Article  CAS  Google Scholar 

  24. Markovic, S., Dondur, V., Dimitrijevic, R.: FTIR spectroscopy of framework aluminosilicate structures: carnegieite and pure sodium nepheline. J. Mol. Struct. 654(1–3), 223–234 (2003)

    Article  CAS  Google Scholar 

  25. Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C., Karakaya, N.: Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous Mesoporous Mater. 235, 78–86 (2016)

    Article  CAS  Google Scholar 

  26. Geng, H., Li, G., Liu, D., Liu, C.: Rapid and efficient synthesis of CHA-type zeolite by interzeolite conversion of LTA-type zeolite in the presence of N, N, N-trimethyladamantammonium hydroxide. J. Solid State Chem. 265, 193–199 (2018)

    Article  CAS  Google Scholar 

  27. Guisnet, M., Ribeiro, F.R.: Deactivation and Regeneration of Zeolite Catalysts. Imperial College Press, London (2011)

    Book  Google Scholar 

  28. Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to Infrared and Raman Spectroscopy, 3rd edn. Academic Press, San Diego (1990)

    Google Scholar 

  29. Park, J.W., Seo, G.: IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Appl. Catal. A 356, 180–188 (2009)

    Article  CAS  Google Scholar 

  30. Montanari, T., Busca, G.: On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib. Spectrosc. 46, 45–51 (2008)

    Article  CAS  Google Scholar 

  31. Xiong, Z., Syed-Hassan, S.S.A., Xu, J., Wang, Y., Hu, S., Su, S., Zhang, S., Xiang, J.: Evolution of coke structures during the pyrolysis of bio-oil at various temperatures and heating rates. J. Anal. Appl. Pyrolysis 134, 336–342 (2018)

    Article  CAS  Google Scholar 

  32. Iqbal, A., Sattar, H., Haider, R., Munir, S.: Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Clean. Prod 219, 258–267 (2019)

    Article  CAS  Google Scholar 

  33. Ng, E.-P., Mintova, S.: Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114, 1–26 (2008)

    Article  CAS  Google Scholar 

  34. Tatlier, M., Munz, G., Henninger, S.K.: Relation of water adsorption capacities of zeolites with their structural properties. Microporous Mesoporous Mater. 264, 70–75 (2018)

    Article  CAS  Google Scholar 

  35. Wang, Y.: Measurements and modeling of water adsorption isotherms of zeolite linde-type A crystals. Ind. Eng. Chem. Res. 59, 8304–8314 (2020)

    Article  CAS  Google Scholar 

  36. Yamamoto, T., Kim, Y.H., Kim, B.C., Endo, A., Thongprachan, N., Ohmori, T.: Adsorption characteristics of zeolites for dehydration of ethanol: evaluation of diffusivity of water in porous structure. Chem. Eng. J. 181–182, 443–448 (2012)

    Article  Google Scholar 

  37. Jänchen, J., Bish, D.L., Möhlman, D.T.F., Stach, H.: Investigation of the water sorption properties of Mars-relevant micro- and mesoporous minerals. Icarus 180, 353–358 (2006)

    Article  Google Scholar 

  38. Fals, J., García, J.R., Falco, M., Sedran, U.: Coke from SARA fractions in VGO. Impact on Y zeolite acidity and physical properties. Fuel 225, 26–34 (2018)

    Article  CAS  Google Scholar 

  39. Ruthven, D.M.: Diffusion in type A zeolites: New insights from old data. Microporous Mesoporous Mater. 162, 69–79 (2012) 

    Article  CAS  Google Scholar 

  40. Dawoud, B., Vedder, U., Amer, E.-H., Dunne, S.: Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. Int. J. Heat Mass Transf. 50, 2190–2199 (2007)

    Article  CAS  Google Scholar 

  41. Qiu, L., Murashov, V., White, M.A.: Zeolite 4A: heat capacity and thermodynamic properties. Solid State Sci. 2, 841–846 (2000)

    Article  CAS  Google Scholar 

  42. Chipera, S.J., Bish, D.L., Carlos, B.A.: Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada. Natural Zeolites ‘93: Occurrence, Properties, Use, pp. 565–577 (1995)

  43. Jänchen, J., Stach, H., Hellwig, U.: Water sorption in faujasite- and chabazite type zeolites of varying lattice composition for heat storage applications. Stud. Surf. Sci. Catal. 174, 599–602 (2008)

    Article  Google Scholar 

  44. Barrer, R.M., Fender, B.E.F.: The diffusion and sorption of water in zeolites-II. Intrinsic and self-diffusion. J. Phys. Chem. Solids 21, 12–24 (1961)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the financial support from PETROBRAS and the ANP (Agência Nacional de Petróleo, Gás Natural e Biocombustíveis – ANP, Brasil) through the Clause of Investments in Research, Development and Innovation in contracts for Exploration, Development and Production of Petroleum and Natural Gas. They also thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) process 402561/2007-4, Notice MCY/CNPq nº10/2007 for XRD analyses and LEVM (Laboratório de Microscopia Vibracional) for the FTIR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana C. S. Azevedo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, B.O., dos Santos, B.F., Maia, D.A.S. et al. Water adsorption in fresh and thermally aged zeolites: equilibrium and kinetics. Adsorption 27, 1043–1053 (2021). https://doi.org/10.1007/s10450-021-00331-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00331-x

Keywords

Navigation