Skip to main content
Log in

Axial dispersion effects with small diameter adsorbent particles

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Macropore diffusion is traditionally assumed to control the mass transfer rate in columns packed with zeolite particles in an oxygen production process. While numerous studies have confirmed this assumption for the particle size used in industrial size pressure swing adsorption (PSA) processes, it has not been validated for the much smaller particle size used in rapid PSA (RPSA). Smaller particles improve the mass transfer rate by increasing interfacial area per volume as well as decreasing diffusion distance. Despite this reduction, RPSA simulations often still assume a mass transfer rate solely limited by macropore diffusion. This approach fails to adequately account for the influence of other mass transfer mechanisms whose impact increases due to particle size reduction. This study experimentally demonstrates the dominant mass transfer mechanism is no longer macropore diffusion for the particle size used in RPSA for small scale oxygen production. Depending on the gas velocity, axial dispersion effects either become the limiting mechanism or equally as important as macropore diffusion. It also shows that improperly accounting for axial dispersion effects has a significant impact on the mass transfer coefficient estimation, often measured with breakthrough experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c i :

Gas phase concentration of species i, mol/m3

D c :

Micropore diffusivity, m2/s

D K :

Knudsen diffusivity, m2/s

D L :

Axial dispersion coefficient, m2/s

D m :

Molecular gas diffusivity, m2/s

D p :

Macropore diffusivity, m2/s

d p :

Adsorbent particle diameter, m

K :

Dimensionless Henry’s law constant, unitless

k f :

Film mass transfer coefficient, 1/s

k i :

Mass transfer coefficient of component i, 1/s

k overall :

Overall mass transfer coefficient, 1/s

L :

Column length, m

n i *:

Equilibrium value of adsorbed phase concentration of component i, mol/kg

n i :

Average adsorbed phase concentration over an adsorbent particle of component i, mol/kg

:

Péclet number

r c :

Crystal radius, m

r p :

Adsorbent particle radius, m

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

t :

Time, s

t c :

Time for stoichiometric center to leave column, s

u :

Interstitial gas velocity, m/s

u w :

Wave (constant profile) velocity, m/s

z :

Axial coordinate, m

ε b :

Bed/column porosity

ε p :

Particle macroporosity

ρ b :

Column bulk density, kg/m3

ρ p :

Particle density, kg/m3

τ p :

Pore tortuosity

γ 1 , γ 2 :

Axial dispersion constant

References

  • Ackley, M.W., Leavitt, F.W.: Rate-enhanced gas separation. US Patent 650,024 (2002)

  • Ackley, M.W., Smolarek, J., Leavitt, F.W.: Pressure swing adsorption gas separation method, using adsorbents with high intrinsic diffusivity and low pressure ratios. US Patent 6,506,214 B1 (2003)

  • Ackley, M.W., Barrett, P.A., Stephenson, N.A., Kikkinides, E.S.: High rate compositions. US Patent 9,533,280 B2 (2017)

  • Alpay, E., Kenney, C.N., Scott, D.M.: Adsorbent particle size effects in the separation of air by rapid pressure swing adsorption. Chem. Eng. Sci. 49, 3059–3075 (1994)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Rapid pressure swing adsorption for reduction of bed size factor of a medical oxygen concentrator. Ind. Eng. Chem. Res. 50, 8703–8710 (2011)

    Article  CAS  Google Scholar 

  • Chai, S.W., Kothare, M.V., Sircar, S.: Numerical study of nitrogen desorption by rapid oxygen purge for a medical oxygen concentrator. Adsorption 18, 87–102 (2012)

    Article  CAS  Google Scholar 

  • Cussler, E.L.: Diffusion: mass transfer in fluid systems. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Delgado, J.M.P.Q.: A critical review of dispersion in packed beds. Heat Mass Transf. 42, 279–310 (2006)

    Article  CAS  Google Scholar 

  • Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23, 109–123 (1968)

    Article  CAS  Google Scholar 

  • Garg, D.R., Ruthven, D.M.: Performance of molecular sieve adsorption columns: combined effects of mass transfer and longitudinal diffusion. Chem. Eng. Sci. 30, 1192–1194 (1975)

    Article  Google Scholar 

  • Gritti, F., Guiochon, G.: General HETP equation for the study of mass-transfer mechanisms in RPLC. Anal. Chem. 78, 5329–5347 (2006)

    Article  CAS  Google Scholar 

  • Haq, N., Ruthven, D.M.: A chromatographic study of sorption and diffusion in 5A zeolite. J. Colloid Interface Sci. 112, 164–169 (1986)

    Article  CAS  Google Scholar 

  • Knox, J.H.: Band dispersion in chromatography–a new view of A-term dispersion. J. Chromatogr. A 831, 3–15 (1999)

    Article  CAS  Google Scholar 

  • Knox, J.H.: Band dispersion in chromatography—a universal expression for the contribution from the mobile zone. J. Chromatogr. A 960, 7–18 (2002)

    Article  CAS  Google Scholar 

  • Kumar, R., Sircar, S.: Skin resistance for adsorbate mass transfer into extruded adsorbent pellets. Chem. Eng. Sci. 41, 2215–2223 (1986)

    Article  CAS  Google Scholar 

  • Langer, G., Roethe, A., Roethe, K.P., Gelbin, D.: Heat and mass transfer in packed beds-III. Axial mass dispersion. Int. J. Heat Mass Transf. 21, 751–759 (1978)

    Article  CAS  Google Scholar 

  • Moran, A., Talu, O.: Role of pressure drop on rapid pressure swing adsorption performance. Ind. Eng. Chem. Res. 56, 5715–5723 (2017)

    Article  CAS  Google Scholar 

  • Moulijn, J.A., Van Swaaij, W.P.M.: The correlation of axial dispersion data for beds of small particles. Chem. Eng. Sci. 31, 845–847 (1976)

    Article  CAS  Google Scholar 

  • Rao, V.R., Farooq, S.: Experimental study of a pulsed-pressure-swing-adsorption process with very small 5A zeolite particles for oxygen enrichment. Ind. Eng. Chem. Res. 53, 13157–13170 (2014)

    Article  CAS  Google Scholar 

  • Rao, V.R., Farooq, S., Krantz, W.B.: Design of a two-step pulsed pressure-swing adsorption-based oxygen concentrator. AIChE J. 56, 354–370 (2010)

    CAS  Google Scholar 

  • Rao, V.R., Kothare, M.V., Sircar, S.: Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept. AIChE J. 60, 3330–3335 (2014a)

    Article  CAS  Google Scholar 

  • Rao, V.R., Kothare, M.V., Sircar, S.: Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen. Adsorption 20, 53–60 (2014b)

    Article  CAS  Google Scholar 

  • Rezaei, F., Webley, P.: Optimum structured adsorbents for gas separation processes. Chem. Eng. Sci. 64, 5182–5191 (2009)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of adsorption and adsorption processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M., Xu, Z.: Diffusion of oxygen and nitrogen in 5A zeolite crystals and commercial 5A pellets. Chem. Eng. Sci. 48, 3307–3312 (1993)

    Article  CAS  Google Scholar 

  • Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Simulation and optimization of small oxygen pressure swing adsorption units. Ind. Eng. Chem. Res. 43, 8328–8338 (2004)

    Article  CAS  Google Scholar 

  • Santos, J.C., Portugal, A.F., Magalhães, F.D., Mendes, A.: Optimization of medical PSA units for oxygen production. Ind. Eng. Chem. Res. 45, 1085–1096 (2006)

    Article  CAS  Google Scholar 

  • Suzuki, M., Smith, J.M.: Axial dispersion in beds of small particles. Chem. Eng. J. 3, 256–264 (1972)

    Article  CAS  Google Scholar 

  • van Deemter, J.J., Zuiderweg, F.J., Klinkenberg, A.: Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5, 271–289 (1956)

    Article  Google Scholar 

  • Vemula, R.R., Kothare, M.V., Sircar, S.: Anatomy of a rapid pressure swing adsorption process performance. AIChE J. 61, 2008–2015 (2015)

    Article  CAS  Google Scholar 

  • Wakao, N., Kaguei, S., Nagai, H.: Effective diffusion coefficients for fluid species reacting with first order kinetics in packed bed reactors and discussion on evaluation of catalyst effectiveness factors. Chem. Eng. Sci. 33, 183–187 (1978)

    Article  CAS  Google Scholar 

  • Wankat, P.C.: Large-scale adsorption and chromatography, (vol. 1–2). CRC Press, Inc., Boca Raton (1986)

    Google Scholar 

  • Weston, K., Jaussaud, D., Chiang, R.L.: Lithium exchanged zeolite X adsorbent blends. US Patent 7,300,899 (2007)

  • Wu, C.W., Kothare, M.V., Sircar, S.: Column dynamic study of mass transfer of pure N2 and O2 into small particles of pelletized LiLSX zeolite. Ind. Eng. Chem. Res. 53, 17806–17810 (2014)

    Article  CAS  Google Scholar 

  • Zheng, J., Barrett, P.A., Pontonio, S.J., Stephenson, N.A., Chandra, P., Kechagia, P.: High-rate and high-density gas separation adsorbents and manufacturing method. Adsorption 20, 147–156 (2014)

    Article  CAS  Google Scholar 

  • Zhong, G., Rankin, P.J., Ackley, M.W.: High frequency PSA process for gas separation. US Patent 7,828,878 B2 (2010)

  • Zhu, X., Liu, Y., Yang, X., Liu, W.: Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption 23, 175–184 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial assistance provided by Cleveland State University. This material is based upon work supported by the National Science Foundation under Grant No. 1126126. The authors further acknowledge Dustin Bowden for his assistance with taking the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Moran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moran, A., Patel, M. & Talu, O. Axial dispersion effects with small diameter adsorbent particles. Adsorption 24, 333–344 (2018). https://doi.org/10.1007/s10450-018-9944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9944-3

Keywords

Navigation