Skip to main content
Log in

Chloride adsorption on Fe- and Al-(hydr)oxide: estimation of Gibbs free energies

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, we used chemical quantum methods to analysis the adsorption of chloride on Al and Fe-(hydr)oxide clusters. Inner and outer sphere complexes were the generating complexes during the adsorption process on variably charged Al- and Fe-(hydr)oxide clusters. For the chloride adsorption on Al-(hydr)oxide, the outer sphere complexes—H-bonded—were favored for all clusters, while the adsorption modes as inner sphere complexes—BB or MM—were not favored. It was found, that the H-bonded complex on neutral clusters was the most thermodynamically favored with an adsorption energy of − 63.4 kJ/mol. For iron clusters, thermodynamic favorability was observed for both outer (− 70.5 kJ/mol) and inner monodentate (− 65.8 kJ/mol) sphere complexes. These theoretical results indicated that the thermodynamic favorability of chloride adsorption on Fe and Al-(hydr)oxide was directly related to positive surface charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acelas, N.Y., Flórez, E.: Adsorption of arsenate on Fe-(hydr)oxide. ‎J. Phys. Conf. Ser. 935, 012074 (2017a)

    Article  Google Scholar 

  • Acelas, N.Y., Flórez, E.: Theoretical study of phosphate adsorption from wastewater using Al-(hydr)oxide. Desalination Water Treat. 60(1), 88–105 (2017b)

    CAS  Google Scholar 

  • Acelas, N.Y., et al.: Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr) oxide: reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds. Comput. Theor. Chem. 1005, 16–24 (2013)

    Article  CAS  Google Scholar 

  • Acelas, N.Y., Hadad, C., Restrepo, A., Ibarguen, C., Flórez, E.: Adsorption of nitrate and bicarbonate on Fe-(hydr)oxide. Inorg. Chem. 56(9), 5455–5464 (2017)

    Article  CAS  Google Scholar 

  • Adamescu, A., Hamilton, I.P., Al-Abadleh, H.A.: Density functional theory calculations on the complexation of p-arsanilic acid with hydrated iron oxide clusters: structures, reaction energies, and transition states. J. Phys. Chem. A. 118(30), 5667–5679 (2014)

    Article  CAS  Google Scholar 

  • Ali, I., Gupta, V.K.: Advances in water treatment by adsorption technology. Nat. Protoc. 1(6), 2661–2667 (2006)

    Article  CAS  Google Scholar 

  • Blaney, L.M., Cinar, S., SenGupta, A.K.: Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 41(7), 1603–1613 (2007)

    Article  CAS  Google Scholar 

  • Borggaard, O.K.: Influence of iron oxides on the non-specific anion (chloride) adsorption by soil. J. Soil Sci. 35(1), 71–78 (1984)

    Article  CAS  Google Scholar 

  • Farrell, J., Chaudhary, B.K.: Understanding arsenate reaction kinetics with ferric hydroxides. ‎Environ. Sci. Technol. 47, 8342–8347 (2013)

    Article  CAS  Google Scholar 

  • Frisch, M., et al.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT (2009)

  • Gebhardt, H., Coleman, N.: Anion adsorption by allophanic tropical soils: I. Chloride adsorption. Soil Sci. Soc. Am. J. 38(2), 255–259 (1974)

    Article  CAS  Google Scholar 

  • Guo, H., ., and Zhou, X., Yang, l.: Simultaneous removal of fluoride and arsenic from aqueous solution using activated red mud. Sep. Sci. Technol. 49(15), 2412–2425 (2014)

    Article  CAS  Google Scholar 

  • He, G., Zhang, M., Pan, G.: Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: thermodynamic, DFT, and EXAFS interpretations. ‎J. Phys. Chem. C. 113(52), 21679–21686 (2009)

    Article  CAS  Google Scholar 

  • Hu, Y., Cheng, H.: Water pollution during China’s industrial transition. Environ. Dev. 8, 57–73 (2013)

    Article  Google Scholar 

  • Kameda, T., et al.: New treatment methods for waste water containing chloride lon using magnesium–aluminum oxide. Chem. Lett. 10, 1136–1137 (2000)

    Article  Google Scholar 

  • Kameda, T., et al.: New treatment method for dilute hydrochloric acid using magnesium–aluminum oxide. ‎Bull. Chem. Soc. Jpn. 75(3), 595–599 (2002)

    Article  CAS  Google Scholar 

  • Kameda, T., et al.: New method of treating dilute mineral acids using magnesium–aluminum oxide. Water Res. 37(7), 1545–1550 (2003a)

    Article  CAS  Google Scholar 

  • Kameda, T., et al.: The simultaneous removal of calcium and chloride ions from calcium chloride solution using magnesium–aluminum oxide. Water Res. 37(16), 4045–4050 (2003b)

    Article  CAS  Google Scholar 

  • Kameda, T., et al.: The removal of chloride from solutions with various cations using magnesium–aluminum oxide. Sep. Purif Technol. 42(1), 25–29 (2005)

    Article  CAS  Google Scholar 

  • Kameda, T., Oba, J., Yoshioka, T.: Simultaneous removal of Cl and \({\text{SO}}_{4}^{{2 - }}\) from seawater using Mg–Al oxide: kinetics and equilibrium studies. Appl. Water Sci. 7(1), 1–8 (2014)

    Google Scholar 

  • Kwon, K.D., Kubicki, J.D.: Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies. Langmuir. 20(21), 9249–9254 (2004)

    Article  CAS  Google Scholar 

  • Lv, L., et al.: Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anion-exchanger. J Hazard. Mater. 161(2–3), 1444–1449 (2009)

    Article  CAS  Google Scholar 

  • Martínez, R.J., Farrell, J.: Understanding Nitrilotris (methylenephosphonic acid) reactions with ferric hydroxide. Chemosphere. 175, 490–496 (2017)

    Article  Google Scholar 

  • Nriagu, J.O.: Global metal pollution: poisoning the biosphere? Environment. 32(7), 7–33 (1990)

    Google Scholar 

  • Panswad, T., Anan, C.: Impact of high chloride wastewater on an anaerobic/anoxic/aerobic process with and without inoculation of chloride acclimated seeds. Water Res. 33(5), 1165–1172 (1999)

    Article  CAS  Google Scholar 

  • Paul, K.W., Kubicki, J.D., Sparks, D.L.: Quantum chemical calculations of sulfate adsorption at the Al-and Fe-(hydr) oxide-H2O interface estimation of Gibbs free energies. Environ. Sci. Technol. 40(24), 7717–7724 (2006)

    Article  CAS  Google Scholar 

  • Pérez, J.F., Hadad, C., Restrepo, A.: Structural studies of the water tetramer. Int. J. Quantum Chem. 108(10), 1653–1659 (2008)

    Article  Google Scholar 

  • Persson, P., Nilsson, N., Sjöberg, S.: Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. J. Colloid Interface Sci. 177(1), 263–275 (1996)

    Article  CAS  Google Scholar 

  • Rietra, R.P., Hiemstra, T., van Riemsdijk: W.H. Sulfate adsorption on goethite. J. Colloid Interface Sci. 218(2), 511–521 (1999)

    Article  CAS  Google Scholar 

  • Shah, B., Chudasama, U.: Synthesis and characterization of a novel hybrid material as amphoteric ion exchanger for simultaneous removal of cations and anions. J Hazard. Mater. 276, 138–148 (2014)

    Article  CAS  Google Scholar 

  • Sherman, D.M., Randall, S.R.: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta. 67, 4223–4230 (2003)

    Article  CAS  Google Scholar 

  • Silva, J.C.M., dos Santos, E.C., de Oliveira, A., Heine, T., De Abreu, H.A., Duarte, H.A.: Adsorption of water, sulfates and chloride on arsenopyrite surface. Appl. Surf. Sci. 434, 389–399 (2018)

    Article  CAS  Google Scholar 

  • Tomohito, K., et al.: New treatment methods for waste water containing chloride ion using magnesium–aluminum oxide. Chem. Lett. 29(10), 1136–1137 (2000)

    Article  Google Scholar 

  • Wu, Q., et al.: Simultaneous removal of cations and anions from waste water by bifunctional mesoporous silica. Appl. Surf. Sci. 351, 155–163 (2015)

    Article  CAS  Google Scholar 

  • Zhu, M., et al.: Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic (III) oxidation. ‎Environ. Sci. Technol. 43(17), 6655–6661 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Universidad de Medellín. Acelas, N.Y thanks “COLCIENCIAS” for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Y. Acelas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2151 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acelas, N.Y., Flórez, E. Chloride adsorption on Fe- and Al-(hydr)oxide: estimation of Gibbs free energies. Adsorption 24, 243–248 (2018). https://doi.org/10.1007/s10450-018-9939-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9939-0

Keywords

Navigation