Skip to main content
Log in

Selection of a stationary phase for the chromatographic separation of organic acids obtained from bioglycerol oxidation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A screening study of the chromatographic separation of Glyceric Acid (GCA) and Tartronic Acid (TTA) was performed using three different polystyrene-divinylbenzene ion-exchange resins in hydrogen form (Dowex® 50WX-8, Dowex® 50WX-4, Dowex® 50WX-2). The experiments were described by the axial dispersion flow model with the LDF approximation incorporated into the software gPROMS. From the three investigated adsorbents differing by the crosslinking, Dowex® 50WX-2 has presented the higher adsorption capacity, as well as the highest bed efficiency expressed by the number of theoretical plates. The adsorption equilibrium constants were determined from single breakthrough experiments, and a very good agreement between experimental and simulated data was achieved for both single components and binary mixtures. Therefore, the fundamental data determined within this work represents a key contribution to the design of continuous chromatographic processes for the purification of GCA and TTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(C\) :

Liquid-phase concentration (kg m−3)

\({C_0}\) :

Feed concentration (kg m−3)

\({C_{i,o}}\) :

Molar concentration of compound i in the bulk phase at the beginning of a breakthrough experiment (mol L−1)

\({C_{out,i}}\) :

Molar concentration of compound i at the fixed bed reactor outlet during a breakthrough experiment mol L−1)

\({D_{ax}}\) :

Axial dispersion coefficient (ms−1)

\({D_{p,i}}\) :

Effective diffusivity of compound i (ms−1)

\({D_c}\) :

Column diameter (m)

\(E(t)\) :

Residence time distribution (m−1)

\(EC\) :

Eluent consumption (m3 eluent kgProduct −1)

\(K\) :

Linear adsorption equilibrium constant

\({k_h}\) :

Mass transfer coefficient (s−1)

\(L\) :

Fixed bed length (cm)

\(Pe\) :

Peclet number

\(Prod\) :

Productivity (kgProdcut (m3 Adsorbent day)−1)

\(PUR\) :

Raffinate purity

\(PUX\) :

Extract purity

\(\bar{q}_{i}\) :

Average resin-phase concentration (kg m−3)

\(q_i^*\) :

Equilibrium resin retained concentration (kg m−3)

\(Q\) :

Volumetric flow-rate (ms−1)

\({R_p}\) :

Radius of the resin particle (m)

\(t\) :

Time variable (s)

\({t_r}\) :

Residence time (s)

\(T\) :

Temperature (K)

\({V_c}\) :

Volume of the column (m3)

\(u~\) :

Interstitial liquid velocity (m s−1)

\({u_s}\) :

Solid velocity (m s−1)

z:

Axial coordinate (m)

\(\alpha\) :

Separation factor

\(\varepsilon\) :

Bed porosity

\({\gamma _j}\) :

Interstitial velocity ratio between the liquid and the solid phases in section j of the TMB

\(\tau\) :

Space time (s)

\({\sigma ^2}\) :

Residence time distribution variance (min2)

References

  • Accorsi, C.A., Blo, G.: Determination of volatile and non-volatile organic acids in technical sugar solutions by ion-exclusion chromatography. J. Chromatogr. A 555(1), 65–71 (1991). doi:10.1016/S0021-9673(01)87167-3

    Article  CAS  Google Scholar 

  • Binder, T.P.: Simulated moving bed chromatographic purification of amino acids. Archer-Daniels-Midland Company, p. 18 (2008)

  • Brainer, J.E.N., Sales, D.C.S., Medeiros, E.B.M., Lima Filho, N.M., Abreu, C.A.M.: Wet oxidation of glycerol into fine organic acids: catalyst selection and kinetic evaluation. Braz. J. Chem. Eng. 31(4), 913–923 (2014). doi:10.1590/0104-6632.20140314s00002655

    Article  Google Scholar 

  • Chambers, T.K., Fritz, J.S.: Effect of polystyrene-divinylbenzene resin sulfonation on solute retention in high-performance liquid chromatography. J. Chromatogr. A. 797(1–2), 139–147 (1998). doi:10.1016/S0021-9673(97)01208-9

    Article  CAS  Google Scholar 

  • Chinnici, F., Spinabelli, U., Riponi, C., Amati, A.: Optimization of the determination of organic acids and sugars in fruit juices by ion-exclusion liquid chromatography. J. Food Compos. Anal. 18(2–3), 121–130 (2005). doi:10.1016/j.jfca.2004.01.005

    Article  CAS  Google Scholar 

  • Ciriminna, R., Pina, C.D., Rossi, M., Pagliaro, M.: Understanding the glycerol market. Eur. J. Lipid Sci. Technol. 116(10), 1432–1439 (2014). doi:10.1002/ejlt.201400229

    Article  CAS  Google Scholar 

  • Dasari, M.A., Kiatsimkul, P.-P., Sutterlin, W.R., Suppes, G.J.: Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A. 281(1–2), 225–231 (2005). doi:10.1016/j.apcata.2004.11.033

    Article  CAS  Google Scholar 

  • Davis, W.R., Tomsho, J., Nikam, S., Cook, E.M., Somand, D., Peliska, J.A.: Inhibition of HIV-1 reverse transcriptase-catalyzed DNA strand transfer reactions by 4-chlorophenylhydrazone of mesoxalic acid. BioChemistry 39(46), 14279–14291 (2000)

    Article  CAS  Google Scholar 

  • Doyon, G., Gaudreau, G., St-Gelais, D., Beaulieu, Y., Randall, C.J.: Simultaneous HPLC determination of organic acids, sugars and alcohols1. Can. Inst. Food Sci. Technol. J. 24(1–2), 87–94 (1991). doi:10.1016/S0315-5463(91)70025-4

    Article  CAS  Google Scholar 

  • Eriksson, C.J.P., Saarenmaa, T.P.S., Bykov, I.L., Heino, P.U.: Acceleration of ethanol and acetaldehyde oxidation by d-glycerate in rats. Metabolism 56(7), 895–898 (2007). doi:10.1016/j.metabol.2007.01.019

    Article  CAS  Google Scholar 

  • Fan, X., Burton, R., Zhou, Y.: Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals: mini review. Open Fuels Energy Sci. J. 3(1), 17–22 (2010). doi:10.2174/1876973X01003010017

    Article  CAS  Google Scholar 

  • Faria, R.P.V., Pereira, C.S.M., Silva, V.M.T.M., Loureiro, J.M., Rodrigues, A.E.: Sorption enhanced reactive process for the synthesis of glycerol ethyl acetal. Chem. Eng. J. 258, 229–239 (2014). doi:10.1016/j.cej.2014.07.073

    Article  CAS  Google Scholar 

  • Fischer, K.: Environmental analysis of aliphatic carboxylic acids by ion-exclusion chromatography. Anal. Chim. Acta 465(1–2), 157–173 (2002). doi:10.1016/S0003-2670(02)00204-0

    Article  CAS  Google Scholar 

  • Fordham, P., Besson, M., Gallezot, P.: Selective catalytic oxidation of glyceric acid to tartronic and hydroxypyruvic acids. Appl. Catal. A. 133(2), L179–L184 (1995). doi:10.1016/0926-860X(95)00254-5

    Article  CAS  Google Scholar 

  • Glueckauf, E., Coates, J.I.: 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation. J. Chem. Soc. (1947). doi:10.1039/JR9470001315

    Google Scholar 

  • Gomes, P.S., Zabkova, M., Zabka, M., Minceva, M., Rodrigues, A.E.: Separation of chiral mixtures in real SMB units: The FlexSMB-LSRE®. AlChE J. 56(1), 125–142 (2010). doi:10.1002/aic.11962

    CAS  Google Scholar 

  • Guiochon, G.: Preparative liquid chromatography. J. Chromatogr. A. 965(1–2), 129–161 (2002). doi:10.1016/s0021-9673(01)01471-6

    Article  CAS  Google Scholar 

  • Habe, H., Shimada, Y., Fukuoka, T., Kitamoto, D., Itagaki, M., Watanabe, K., Yanagishita, H., Sakaki, K.: Two-stage electrodialytic concentration of glyceric acid from fermentation broth. J. Biosci. Bioeng. 110(6), 690–695 (2010). doi:10.1016/j.jbiosc.2010.07.003

    Article  CAS  Google Scholar 

  • Handa, S.S., Sharma, A., Chakraborti, K.K.: Natural products and plants as liver protecting drugs. Fitoterapia 57(5), 307–351 (1986)

    CAS  Google Scholar 

  • Juza, M.: Development of an high-performance liquid chromatographic simulated moving bed separation from an industrial perspective. J. Chromatogr. A. 865(1–2), 35–49 (1999). doi:10.1016/S0021-9673(99)00982-6

    Article  CAS  Google Scholar 

  • Kano, M.R., Bae, Y., Iwata, C., Morishita, Y., Yashiro, M., Oka, M., Fujii, T., Komuro, A., Kiyono, K., Kaminishi, M., Hirakawa, K., Ouchi, Y., Nishiyama, N., Kataoka, K., Miyazono, K.: Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl. Acad. Sci. USA 104(9), 3460–3465 (2007). doi:10.1073/pnas.0611660104

    Article  CAS  Google Scholar 

  • Kerr, B.J., Dozier, W.A. III, Bregendahl, K.: Nutritional value of crude glycerin for nonruminants. In: Proceedings of the 23rd Annual Carolina Swine Nutrition Conference, Raleigh, NC (2007)

  • Kimura, H.: Oxidation assisted new reaction of glycerol. Polym. Adv. Technol. 12(11–12), 697–710 (2001). doi:10.1002/pat.91

    Article  CAS  Google Scholar 

  • Kimura, H., Tsuto, K.: Catalytic synthesis ofdl-serine and glycine from glycerol. J. Am. Oil Chem. Soc. 70(10), 1027–1030 (1993). doi:10.1007/BF02543031

    Article  CAS  Google Scholar 

  • Lei, W.L.: High inventory weighs on Asia refined glycerine market. (2012). Accessed 05 Oct 2016

  • Lesova, K., Sturdikova, M., Proksa, B., Pigos, M., Liptaj, T.: OR-1-a mixture of esters of glyceric acid produced by Penicillium funiculosum and its antitrypsin activity. Folia Microbiol. 46(1), 21–23 (2001)

    Article  CAS  Google Scholar 

  • Li, S., Fritz, J.S.: Organic modifiers for the separation of organic acids and bases by liquid chromatography. J. Chromatogr. A. 964(1–2), 91–98 (2002)

    Article  CAS  Google Scholar 

  • Luz, D.A., Rodrigues, A.K.O., Silva, F.R.C., Torres, A.E.B., Cavalcante, C.L. Jr., Brito, E.S., Azevedo, D.C.S: Adsorptive separation of fructose and glucose from an agroindustrial waste of cashew industry. Bioresour. Technol. 99(7), 2455–2465 (2008). doi:10.1016/j.biortech.2007.04.063

    Article  CAS  Google Scholar 

  • McCoy, M.: Glycerin Surplus. Chem. Eng. News Arch. 84(6), 7 (2006). doi:10.1021/cen-v084n006.p007a

    Article  Google Scholar 

  • McCulloch, B., Goodman, W.H.: Process for purifying phenylalanine. US Patent (1991)

  • Nesterenko, P.N., Kebets, P.A., Volgin, Y.V.: Use of sulfonated cation-exchange resin based on hypercrosslinked polystyrene for the separation of organic acids. J. Anal. Chem. 56(8), 715–720 (2001). doi:10.1023/a:1016777409132

    Article  CAS  Google Scholar 

  • Nicoud, R.M.: The separation of optical isomers by simulated moving bed chromatography (Part I). Pharm. Technol. Eur. 11(3), 36–44 (1999)

    CAS  Google Scholar 

  • Oil Price Information Service Inc.: Ethanol & Biodiesel Information Service, vol. 13. p. 18. OPIS Publication (2016)

  • Otero, M., Zabkova, M., Rodrigues, A.E.: Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep. Purif. Technol. 45(2), 86–95 (2005). doi:10.1016/j.seppur.2005.02.011

    Article  CAS  Google Scholar 

  • Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C.: From glycerol to value-added products. Angew. Chem. Int. Ed. Engl. 46(24), 4434–4440 (2007). doi:10.1002/anie.200604694

    Article  CAS  Google Scholar 

  • Pedruzzi, I., Silva, E., Rodrigues, A.: Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. Sep. Purif. Technol. 63(3), 600–611 (2008). doi:10.1016/j.seppur.2008.07.001

    Article  CAS  Google Scholar 

  • Rodrigues, A.E., Pereira, C., Minceva, M., Pais, L.S., Ribeiro, A.M., Ribeiro, A., Silva, M., Graça, N., Santos, J.C.: Simulated moving bed technology: principles, design and process applications. Simulated moving bed technology. Elsevier, Oxford (2015)

    Google Scholar 

  • Scharlemann, J.P.W., Laurance, W.F.: How green are biofuels? Science. 319(5859), 43–44 (2008)

    Article  CAS  Google Scholar 

  • Seidel-Morgenstern, A.: Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A. 1037(1–2), 255–272 (2004). doi:10.1016/j.chroma.2003.11.108

    Article  CAS  Google Scholar 

  • Shirao, M., Furuta, R., Suzuki, S., Nakazawa, H., Fujita, S., Maruyama, T.: Sixth international symposium on high performance capillary electrophoresis determination of organic acids in urine by capillary zone electrophoresis. J. Chromatogr. A 680(1), 247–251 (1994). doi:10.1016/0021-9673(94)80074-X

    Article  CAS  Google Scholar 

  • Taylor, J.: OUTLOOK’12: New uses make refined glycerine oleochem leader (2012). Accessed 05 Oct 2016

  • Thompson, J.C., He, B.B.: Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 22(2), 261–265 (2006)

    Article  Google Scholar 

  • Vente, J.A., Bosch, H., de Haan, A.B., Bussmann, P.J.T: Evaluation of sugar sorption isotherm measurement by frontal analysis under industrial processing conditions. J. Chromatogr. A 1066(1–2), 71–79 (2005). doi:10.1016/j.chroma.2004.12.071

    Article  CAS  Google Scholar 

  • Walser, P.: New ion-exclusion phase for organic acids. J. Chromatogr. A 439(1), 71–81 (1988). doi:10.1016/S0021-9673(01)81676-9

    Article  CAS  Google Scholar 

  • Wilke, C.R., Chang, P.: Correlation of diffusion coefficients in dilute solutions. AlChE J. 1(2), 264–270 (1955). doi:10.1002/aic.690010222

    Article  CAS  Google Scholar 

  • Worz, N., Brandner, A., Claus, P.: Platinum–bismuth-catalyzed oxidation of glycerol: kinetics and the origin of selective deactivation. J. Phys. Chem. C. 114(2), 1164–1172 (2010). doi:10.1021/jp909412h

    Article  Google Scholar 

Download references

Acknowledgements

LCDC thanks to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support through a PhD Scholarship and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), which supported this specify work through Sandwich Scholarship at the University of Porto. This work was also financially supported by: Project POCI-01-0145-FEDER-00698 - Associate Laboratory LSRE-LCM funded by FEDER funds through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) - and by national funds through FCT - Fundação para a Ciência e a Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui P. V. Faria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, L.C.D., Filho, N.M.L., Faria, R.P.V. et al. Selection of a stationary phase for the chromatographic separation of organic acids obtained from bioglycerol oxidation. Adsorption 23, 627–638 (2017). https://doi.org/10.1007/s10450-017-9882-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9882-5

Keywords

Navigation