Skip to main content
Log in

Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Measurement of the pore-size distribution (PSD) via gas adsorption and the so-called “kernel method” is a widely used characterization technique for rigid adsorbents. Yet, standard techniques and analytical equipment are not appropriate to characterize the emerging class of flexible adsorbents that deform in response to the stress imparted by an adsorbate gas, as the PSD is a characteristic of the material that varies with the gas pressure and any other external stresses. Here, we derive the PSD for a flexible adsorbent using statistical mechanics in the osmotic ensemble to draw analogy to the kernel method for rigid materials. The resultant PSD is a function of the ensemble constraints including all imposed stresses and, most importantly, the deformation free energy of the adsorbent material. Consequently, a pressure-dependent PSD is a descriptor of the deformation characteristics of an adsorbent and may be the basis of future material characterization techniques. We discuss how, given a technique for resolving pressure-dependent PSDs, the present statistical mechanical theory could enable a new generation of analytical tools that measure and characterize certain intrinsic material properties of flexible adsorbents via otherwise simple adsorption experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balzer, C., Brameier, S., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbon during adsorption of nitrogen, argon, carbon dioxide, and water studied by in situ dilatometry. Langmuir 31, 12512–12519 (2015)

    Article  CAS  Google Scholar 

  2. Balzer, C., Cimino, R.T., Gor, G.Y., Neimark, A.V., Reichenauer, G.: Deformation of microporous carbons during N2, Ar, and CO2 adsorption: Insight from the density functional theory. Langmuir 32, 8265–8274 (2016)

    Article  CAS  Google Scholar 

  3. Bousquet, D., Coudert, F.X., Boutin, A.: Free energy landscapes for the thermodynamic understanding of adsorption-induced deformations and structural transitions in porous materials. J. Chem. Phys. 137, 044,118 (2012)

  4. Coudert, F.X., Boutin, A., Fuchs, A.H., Neimark, A.V.: Adsorption deformation and structural transitions in metal-organic frameworks: From the unit cell to the crystal. J. Phys. Chem. Lett. 4, 3198–3205 (2013)

    Article  CAS  Google Scholar 

  5. Coudert, F.X., Boutin, A., Jeffroy, M., Mellot-Draznieks, C., Fuchs, A.H.: Thermodynamic methods and models to study flexible metal-organic frameworks. ChemPhysChem 12, 247–258 (2011)

    Article  CAS  Google Scholar 

  6. Coudert, F.X., Fuchs, A.H., Neimark, A.V.: Adsorption deformation of microporous composites. Dalton Trans. 45, 4136–4140 (2015)

    Article  Google Scholar 

  7. Errington, J.R.: Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation. J. Chem. Phys. 118, 9915–9925 (2003)

    Article  CAS  Google Scholar 

  8. Espinal, L., Wong-Ng, W., Kaduk, J.A., Allen, A.J., Snyder, C.R., Chiu, C., Siderius, D.W., Li, L., Cockayne, E., Espinal, A.E., Suib, S.L.: Time-dependent CO\(_2\) sorption hysteresis in a one-dimensional microporous octahedral molecular sieve. J. Am. Chem. Soc. 134, 7944–7951 (2012)

    Article  CAS  Google Scholar 

  9. Evans, J.D., Bocquet, L., Coudert, F.X.: Origins of negative gas adsorption. Chem 1, 873–886 (2016)

    CAS  Google Scholar 

  10. Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A.A., Snurr, R.Q., Nguyen, S.T., Yazaydin, A., Hupp, J.T.: Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)

    Article  CAS  Google Scholar 

  11. Ferey, G.: Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  CAS  Google Scholar 

  12. Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)

    Article  CAS  Google Scholar 

  13. Ghysels, A., Vanduyfhuys, L., Vandichel, M., Waroquier, M., Van Speybroeck, V., Smit, B.: On the thermodynamics of framework breathing: A free energy model for gas adsorption in MIL-53. J. Phys. Chem. C 117, 11540–11554 (2013)

    Article  CAS  Google Scholar 

  14. Gor, G.Y.: Adsorption stress changes the elasticity of liquid argon confined in a nanopore. Langmuir 30, 13564–13569 (2014)

    Article  CAS  Google Scholar 

  15. Gor, G.Y., Siderius, D.W., Rasmussen, C.J., Krekelberg, W.P., Shen, V.K., Bernstein, N.: Relation between pore size and the compressibility of a confined fluid. J. Chem. Phys. 143, 194,506 (2015)

  16. Gor, G.Y., Siderius, D.W., Shen, V.K., Bernstein, N.: Modulus–pressure equation for confined fluids. J. Chem. Phys. 145, 164,505 (2016)

  17. Kowalczyk, P., Balzer, C., Reichenauer, G., Terzyk, A.P., Gauden, P.A., Neimark, A.V.: Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons. Carbon 103, 263–272 (2016)

    Article  CAS  Google Scholar 

  18. Krause, S., Bon, V., Senkovska, I., Stoeck, U., Wallacher, D., Tobbens, D.M., Zander, S., Pillai, R.S., Maurin, G., Coudert, F.X., Kaskel, S.: A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532, 348–352 (2016)

    Article  CAS  Google Scholar 

  19. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    Article  CAS  Google Scholar 

  20. Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759), 276–279 (1999)

    Article  CAS  Google Scholar 

  21. Li, J.R., Sculley, J., Zhou, H.C.: Metal-organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Article  CAS  Google Scholar 

  22. Liu, Y., Her, J.H., Dailly, A., Ramirez-Cuesta, A.J., Neumann, D.A., Brown, C.M.: Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc. 130, 11813–11818 (2008)

    Article  CAS  Google Scholar 

  23. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Kluwer, Boston (2004)

    Book  Google Scholar 

  24. Mahynski, N.A., Shen, V.K.: Multicomponent adsorption in mesoporous flexible materials with flat-histogram monte carlo methods. J. Chem. Phys. 145, 174709 (2016)

  25. Millange, F., Serre, C., Ferey, G.: Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first Cr\(^{{\rm III}}\) hybrid inorganic-organic microporous solids: Cr\(^{{\rm III}}\)(OH)\(\cdot\){O\(_2\)C-C\(_6\)H\(_4\)-CO\(_2\)}\(\cdot\){HO\(_2\)C-C\(_6\)H\(_4\)-CO\(_2\)H}\(_x\). Chem. Commun. 822–823 (2002)

  26. Neimark, A.V., Coudert, F.X., Boutin, A., Fuchs, A.H.: Stress-based model for the breathing of metal-organic frameworks. J. Phys. Chem. L 1, 445–449 (2010)

    Article  CAS  Google Scholar 

  27. Neimark, A.V., Coudert, F.X., Triguero, C., Boutin, A., Fuchs, A.H., Beurroies, I., Denoyel, R.: Structural transitions in MIL-53 (Cr): View from outside and inside. Langmuir 27, 4734–4741 (2011)

    Article  CAS  Google Scholar 

  28. Rane, K.S., Murali, S., Errington, J.R.: Monte Carlo simulation methods for computing liquid-vapor saturation properties of model systems. J. Chem. Theory Comput. 9, 2552–2566 (2013)

    Article  CAS  Google Scholar 

  29. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5), 2311–2320 (2000)

    Article  CAS  Google Scholar 

  30. Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by Powders and Porous Solids. Academic Press, London (1999)

    Google Scholar 

  31. Sarkisov, L., Martin, R.L., Haranczyk, M., Smit, B.: On the flexibility of metal-organic frameworks. J. Am. Chem. Soc. 136, 2228–2231 (2014)

    Article  CAS  Google Scholar 

  32. Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853–861 (1989)

    Article  CAS  Google Scholar 

  33. Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louer, D., Ferey, G.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr\(^{{\rm III}}\)(OH)\(\cdot\)O\(_2\)C-C\(_6\)H\(_4\)-CO\(_2\) \(\cdot\)HO\(_2\)C-C\(_6\)H\(_4\)-CO\(_2\)H\(_x\cdot\)H\(_2\)O\(_y\). J. Am. Chem. Soc. 124, 13519–13526 (2002)

    Article  CAS  Google Scholar 

  34. Shell, M.S., Debenedetti, P.G., Panagiotopoulos, A.Z.: Flat-histogram dynamics and optimization in density of states simulations of fluids. J. Phys. Chem. B 108, 19748–19755 (2004)

    Article  CAS  Google Scholar 

  35. Shen, V.K., Siderius, D.W.: Elucidating the effects of adsorbent flexibility on fluid adsorption using simple models and flat-histogram sampling methods. J. Chem. Phys. 104, 244106 (2014)

  36. Shen, V.K., Siderius, D.W., Mahynski, N.A.: Capillary phase transitions in flexible porous materials. J. Chem. Phys. (2017). (In Preparation)

  37. Siderius, D.W., Shen, V.K.: Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J. Phys. Chem. C 117, 5861–5872 (2013)

    Article  CAS  Google Scholar 

  38. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  39. Thommes, M.: Physical Adsorption Characterization of MOFs (Metal Organic Framework) Materials. Webinar (2015)

  40. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  CAS  Google Scholar 

  41. Ustinov, E.A., Do, D.D.: Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions. Carbon 44, 2652–2663 (2006)

    Article  CAS  Google Scholar 

  42. Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q.: Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4, 83–89 (2012)

    Article  CAS  Google Scholar 

  43. Zaworotko, M.J.: Materials science: designer pores made easy. Nature 451, 410–411 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel. W. Siderius.

Additional information

Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States of America.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siderius, D.W., Mahynski, N.A. & Shen, V.K. Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques. Adsorption 23, 593–602 (2017). https://doi.org/10.1007/s10450-017-9879-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9879-0

Keywords

Navigation