Skip to main content
Log in

Using the local adsorption equilibrium distribution based on a Langmuir type adsorption model to investigate liquid phase adsorption of sugars on zeolite BEA

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption isotherms generated by the Elution by Characteristic Point Method were used to determine the local adsorption equilibrium distribution (AEqD) on commercial zeolite BEA 150 extrudate pellets at room temperature. The linear sugar alcohol sorbitol and the circular sugar fructose were used as sensor molecules since both showed a rather strong adsorption with a typical type I isotherm. The expectation maximization method was transferred into a MATLAB code to calculate the most probable AEqD explaining the experimental data. The resulting distribution favors a bi-site Langmuir model that is in good agreement with the pore sizes of this zeolite, the critical diameters of the adsorptive molecules and gas phase experiments conducted previously. In summary, both molecules are too big to enter the zigzag channels of the zeolite. Instead they occupy two different binding sites in the straight channels and at the intersections between the straight and the zigzag channels. Therefore, sugars and sugar alcohol can be a good sensor to investigate the interaction between a zeolite crystal and adsorptive molecules in the liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AED:

Adsorption energy distribution

AEqD:

Adsorption equilibrium distribution

BEA150:

Dealuminated β-zeolite with Si/Al = 75

ECP:

Elution by characteristic point

EM:

Expectation maximization

PM:

Peak maximum

\({{c}_{0}}\) :

Initial concentration in the liquid phase, \(\text{m}{{\text{g}}_{\text{Adsorbtive}}}\ {{\text{L}}^{-1}}\)

\({{c}_{\text{e}}}\) :

Equilibrium concentration, \(\text{m}{{\text{g}}_{\text{Adsorbtive}}}\ {{\text{L}}^{-1}}\)

\({{c}_{i}}\) :

Concentration of component i, \(\text{m}{{\text{g}}_{\text{Adsorbtive}}}\ {{\text{L}}^{-1}}\)

\(c_{\text{i}}^{{}^\circ }\) :

Dimensionless concentration of component i

\({{c}_{i,max}}\) :

Maximum concentration of component i, \(\text{m}{{\text{g}}_{\text{Adsorbtive}}}\ {{\text{L}}^{-1}}\)

\({{c}_{i,min}}\) :

Minimum concentration of component i, \(\text{m}{{\text{g}}_{\text{Adsorbtive}}}\ {{\text{L}}^{-1}}\)

\({{E}_{\text{A}}}\) :

Adsorption energy, \(\text{J}\ \text{mol}^{-1}\)

\({{E}_{\text{solute}}}\) :

Adsorption energy of the solute, \(\text{J}\ \text{mol}^{-1}\)

\({{E}_{\text{solvent}}}\) :

Adsorption energy of the solvent, \(\text{J}\ \text{mol}^{-1}\)

\(f\) :

Adsorption equilibrium distribution, \(\text{m}{{\text{g}}_{\text{Adsorbate}}}\ \text{g}_{\text{Adsorbent}}^{-1}\)

\(K\) :

Binding coefficient, \(\text{L}\ {{\text{g}}^{-1}}\)

\({{K}_{0}}\) :

Pre-exponential factor, \(\text{mL}\ {{\text{g}}^{-1}}\)

\(K_{i}^{Ex}\) :

Excess adsorption equilibrium constant,\(\text{mL}\ {{\text{g}}^{-1}}\)

\({{m}_{0}}\) :

Mass of liquid, g

\({{m}_{\text{acc}}}\) :

Accumulated mass, g

\({{m}_{\text{Ad}}}\) :

Mass of adsorbent, g

\({{\dot{m}}_{\text{conv}}}\) :

Mass flow by convection, \(\text{g}\ {{\text{s}}^{-1}}\)

\({{\dot{m}}_{\text{disp}}}\) :

Mass flow by dispersion, \(\text{g}\ {{\text{s}}^{-1}}\)

\({{\dot{m}}_{\text{t}}}\) :

Mass flow into zeolite particles, \(\text{g}\ {{\text{s}}^{-1}}\)

\({{q}_{i}}\) :

Real loading of component i, \(\text{m}{{\text{g}}_{\text{Adsorbate}}}\ \text{g}_{\text{Adsorbent}}^{-1}\)

\(q_{i}^{\text{Ex}}\) :

Excess loading of component i, \(\text{m}{{\text{g}}_{\text{Adsorbate}}}\ \text{g}_{\text{Adsorbent}}^{-1}\)

\({{q}_{\text{S}}}\) :

Saturation loading, \(\text{m}{{\text{g}}_{\text{Adsorbate}}}\ \text{g}_{\text{Adsorbent}}^{-1}\)

\(R\) :

Universal gas constant \(\text{J}\ \text{mo}{{\text{l}}^{-1}}\ {{\text{K}}^{-1}}\)

\(t\) :

Time, s

\(T\) :

Temperature, K

\({{u}_{\text{m}}}\) :

Velocity of the fluid, \(\text{m}\ {{\text{s}}^{-1}}\)

\({{V}_{\text{dead}}}\) :

Dead volume of the apparatus, L

\({{V}_{\text{inj}}}\) :

Injection volume, L

\({{V}_{\text{L}}}\) :

Volume of the liquid, L

\({{V}_{\text{R}}}\) :

Retention volume of a substance, L

\({{V}_{\text{S}}}\) :

Concentration-dependent system dead volume, L

\(w\) :

Band velocity, \(\text{m}\ {{\text{s}}^{-1}}\)

\(x\) :

Length, m

\({{\varepsilon }_{\text{t}}}\) :

Total porosity of the bed in the column, \(\text{m}_{\text{void}}^{3}\ \text{m}_{\text{total}}^{-3}\)

\(\theta\) :

Local isotherm model, 1

\({{\rho }_{p}}\) :

Density of the pellet, \(\text{g}\ {{\text{L}}^{-1}}\)

References

  • Bárcia, P.S., Silva, J., Rodrigues, A.E.: Multicomponent sorption of hexane isomers in zeolite BETA. AIChE J. 53(8), 1970–1981 (2007)

    Article  Google Scholar 

  • Berensmeier, S., Buchholz, K.: Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated β-zeolite. Sep. Purif. Technol. 38(2), 129–138 (2004)

    Article  CAS  Google Scholar 

  • Buttersack, C., Fornefett, I., Mahrholz, J., Buchholz, K.: Specific adsorption from aqueous phase on apolar zeolites. Stud. Surf. Sci. Catal. 105 C, 1723–1730 (1997)

    Article  Google Scholar 

  • Fornefett, I.: Adsorption und Chromatographie von Kohlenhydraten und anderen Hydroxyverbindungen an Zeolithen, Dissertation TU Braunschweig (1999)

  • García-Pérez, E., Barcia, P.S., Silva, José A. C., Rodrigues, A.E., Calero, S.: Influence of the sodium and calcium non-framework cations on the adsorption of hexane isomers in zeolite BEA. Theor. Chem. Acc. 128(4–6), 695–703 (2011)

    Article  Google Scholar 

  • Gritti, F., Guiochon, G.: Retention of ionizable compounds in reversed-phase liquid chromatography. Effect of the ionic strength of the mobile phase and the nature of the salts used on the overloading behavior. Anal. Chem. 76(16), 4779–4789 (2004)

    Article  CAS  Google Scholar 

  • Gritti, F., Guiochon, G.: Effect of the surface heterogeneity of the stationary phase on the range of concentrations for linear chromatography. Anal. Chem. 77(4), 1020–1030 (2005)

    Article  CAS  Google Scholar 

  • Gritti, F., Guiochon, G.: Limits of the numerical estimation of the adsorption energy distribution from adsorption isotherm data using the expectation-maximization method. J. Chromatogr. A 1144(2), 208–220 (2007)

    Article  CAS  Google Scholar 

  • Gritti, F., Guiochon, G.: Determination of the adsorption energy distribution of neutral and charged compouds onto endcapped silica-C18 adsorbent from polar liquid phases. Colloid J. 71(4), 480–486 (2009)

    Article  CAS  Google Scholar 

  • Hartig, D., Waluga, T., Scholl, S.: Expanding the elution by characteristic point method to columns with a finite number of theoretical plates. J. Chromatogr. A 1413, 77–84 (2015)

    Article  CAS  Google Scholar 

  • Holtkamp, M., Scholl, S.: Adsorption properties of BEA zeolites and their aluminum phosphate extrudates for purification of isomaltose. Adsorption 17(5), 801–811 (2011)

    Article  CAS  Google Scholar 

  • Holtkamp, M., Waluga, T., Scholl, S.: Adsorption properties of glucose and isomaltose on different BEA zeolites. J. Non-Equilibr. Thermodyn. 37(3), 247–272 (2012)

    Article  CAS  Google Scholar 

  • Jaroniec, M.: Physical adsorption on heterogeneous solids. Adv. Colloid Interface Sci. 18(3–4), 149–225 (1983)

    Article  CAS  Google Scholar 

  • Samuelsson, J., Fornstedt, T.: Calculations of the energy distribution from perturbation peak data—a new tool for characterization of chromatographic phases. J. Chromatogr. A 1203(2), 177–184 (2008)

    Article  CAS  Google Scholar 

  • Samuelsson, J., Franz, A., Stanley, B.J., Fornstedt, T.: Thermodynamic characterization of separations on alkaline-stable silica-based C18 columns: why basic solutes may have better capacity and peak performance at higher pH. J. Chromatogr. A 1163(1–2), 177–189 (2007)

    Article  CAS  Google Scholar 

  • Schmidt-Traub, H., Schulte, M., Seidel-Morgenstern, A. (eds): Preparative chromatography, 2nd edn. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  • Shalliker, R., Catchpoole, H.J., Dennis, G.R., Guiochon, G.: Visualising viscous fingering in chromatography columns—high viscosity solute plug. J. Chromatogr. A 1142(1), 48–55 (2007)

    Article  CAS  Google Scholar 

  • Stanley, B.J., Guiochon, G.: Numerical estimation of adsorption energy distributions from adsorption isotherm data with the expectation-maximization method. J. Phys. Chem. 97(30), 8098–8104 (1993)

    Article  CAS  Google Scholar 

  • Stanley, B.J., Guiochon, G.: Importance of the accuracy of experimental data in the nonlinear chromatographic determination of adsorption energy distributions. Langmuir. 10(11), 4278–4285 (1994)

    Article  CAS  Google Scholar 

  • Stanley, B.J., Krance, J.: Analysis of active sites and heterogeneity in commercial reversed-phase octadecylsilanated silica with numerically calculated sorption distributions. J. Chromatogr. A 1011(1–2), 11–22 (2003)

    Article  CAS  Google Scholar 

  • Undin, T., Samuelsson, J., Törncrona, A., Fornstedt, T.: Evaluation of a combined linear-nonlinear approach for column characterization using modern alkaline-stable columns as model. J. Sep. Sci. 36(11), 1753–1761 (2013)

    Article  CAS  Google Scholar 

  • Waluga, T.: Zur Prozessgestaltung von Enzymkatalysen mit reaktionsintegrierter Adsorption. Dissertation, TU Braunschweig, 2013, 1st edn. ICTV-Schriftenreihe, vol. 20. Cuvillier, Göttingen (2013)

    Google Scholar 

  • Waluga, T., Scholl, S.: Process design aspects for reaction-integrated adsorption in multi-enzymatic catalysis. Chem. Eng. Technol. 38(10), 1817–1826 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by German Research Foundation (DFG) under Grant No. SCHO 842/9-2. We gratefully acknowledge receipt of zeolite extrudates from Clariant Company. We also thank Dr. Ingo Kampen, Institute for Particle Technology at TU Braunschweig, for supplying the crushed zeolite extrudate and Marcus Möbius and Toni Gossmann for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Scholl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartig, D., Schwindt, N. & Scholl, S. Using the local adsorption equilibrium distribution based on a Langmuir type adsorption model to investigate liquid phase adsorption of sugars on zeolite BEA. Adsorption 23, 433–441 (2017). https://doi.org/10.1007/s10450-017-9873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9873-6

Keywords

Navigation