Skip to main content
Log in

Computer simulation of adsorption and sitting of CO2, N2, CH4 and water on a new Al(OH)-fumarate MOF

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The water present in all gas stream leads to changes in the adsorbed amount of the target gas and the selectivity among the constituents of the mixture. The high stability characteristics and low cost of the new Al(OH) fumarate MOF synthetized by BASF, makes it an interesting porous material with mild hydrophobic properties for industrial use. Thus, new force field parameters were proposed for the CO2, N2 and CH4 /Al(OH) fumarate systems validated by adsorption experimental data in three temperatures. The sittings of CO2, N2, CH4 and H2O molecules inside the MOF pores at high (303 K) and low (150 K or 230 K) temperatures were also presented. An alternative approach that performed Monte Carlo simulations on two ensembles, the canonical ensemble (NVT) and the grand canonical ensemble (µVT), was validated and applied to evaluate the coadsorption of CO2/H2O, N2/H2O and CH4/H2O for a MOF exposure to the relative humidity of 14, 20, 25, 30 and 40% at 303 K. The gases molecules fill the center of the pores of the Al(OH) fumarate MOF near the aluminum clusters. The water molecules showed a complex behavior, forming clusters even in the early stages of adsorption. The Al(OH)-fumarate MOF, when compared to NaX, shows hydrophobic behavior and impaired in CO2 capacity only at relative humidity above 20%. We also found that CO2 selectivity increases for CO2/N2 and CO2/CH4 as the amount of water increases. We hope that the proposed methodology to study water coadsorption could be applied to other frameworks to assist in the screening of MOF for separation/capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abascal, J.L., Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005)

    Article  CAS  Google Scholar 

  • Alvarez, E., Guillou, N., Martineau, C., Bueken, B., Van de Voorde, B., Le Guillouzer, C., Fabry, P., Nouar, F., Taulelle, F., De Vos, D., Chang, J., Cho, K.H., Ramsahye, N., Devic, T., Daturi, M., Maurin, G., Serre, C.: The Structure of the Aluminum Fumarate Metal – Organic Framework Angewandte. Angew. Chemie 54, 3664–3668 (2015)

    Article  CAS  Google Scholar 

  • Castillo, J.M., Vlugt, T.J.H., Calero, S.: Understanding water adsorption in CuBTC metal organic frameworks. J. Phys. Chem. C. 112, 15934–15939 (2008)

    Article  CAS  Google Scholar 

  • Castillo, J.M., Dubbeldam, D., Vlugt, T.J.H., Smit, B., Calero, S.: Evaluation of various water models for simulation of adsorption in hydrophobic zeolites. Mol. Simul. 35, 1067–1076 (2009)

    Article  CAS  Google Scholar 

  • Chen, B., Potoff, J.J., Siepmann, J.I.: Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols. J. Phys. Chem. B. 105, 3093–3104 (2002)

    Article  Google Scholar 

  • Coelho, J.A., Ribeiro, A.M., Ferreira, A.F.P., Lucena, S.M.P., Rodrigues, A.E., Azevedo, D.C.S: Stability of an Al-fumarate MOF and its potential for CO2 capture from wet stream. Ind. Eng. Chem. Res. 55, 2134–2143 (2016)

    Article  CAS  Google Scholar 

  • Cracknell, R.F., Gubbins, K.E.: A Monte Carlo study of methane adsorption in aluminophosphates and porous carbons. J. Mol. Liq. 54, 239–251 (1992)

    Article  Google Scholar 

  • da Silva, F., Magalhães, G., Jardim, E., Silvestre-Albero, J., Sepúlveda-Escribano, A., de Azevedo, D., de Lucena, S.: CO2 Adsorption on Ionic Liquid-Modified Cu-BTC: Experimental and Simulation Study. Adsorpt. Sci. Technol. 33, 223–242 (2015)

    Article  Google Scholar 

  • Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA, Molecular Software Package for Adsorption and Diffusion in Nanoporous Materials. Northwestern University, Evanston (2008)

    Google Scholar 

  • Farmahini, A.H., Bhatia, S.K.: Differences in the adsorption and diffusion behaviour of water and non-polar gases in nanoporous carbon: role of cooperative effects of pore confinement and hydrogen bonding. Mol. Simul.(2014). 10.1080/08927022.2014.976640

    Google Scholar 

  • Gaab, M., Trukhan, N., Maurer, S., Gummaraju, R., Müller, U.: The progression of Al-based metal-organic frameworks—From academic research to industrial production and applications. Microporous Mesoporous Mater. 157, 131–136 (2012)

    Article  CAS  Google Scholar 

  • Ghosh, P., Kim, K.C., Snurr, R.Q.: Modeling water and ammonia adsorption in hydrophobic metal-organic frameworks: Single components and mixtures. J. Phys. Chem. C. 118, 1102–1110 (2014)

    Article  CAS  Google Scholar 

  • Gomes, V.A.M., Coelho, J.A., Peixoto, H.R., Lucena, S.M.P.: Easily tunable parameterization of a force field for gas adsorption on FAU zeolites. Adsorption. 21, 25–35 (2015)

    Article  CAS  Google Scholar 

  • Gutiérrez-Sevillano, J.J., Caro-Pérez, A., Dubbeldam, D., Calero, S.: Molecular simulation investigation into the performance of Cu–BTC metal–organic frameworks for carbon dioxide–methane separations. Phys. Chem. Chem. Phys. 13, 20453 (2011)

    Article  Google Scholar 

  • Hamon, L., Llewellyn, P.L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G.D., Maurin, G., Serre, C., Driver, G., Beek, W.V., Jolimaı, E., Vimont, A., Daturi, M., Je, S., Orientale, A.A. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53 (Cr) MOF. J. Am. Chem. Soc. 131, 17490–17499 (2009)

    Article  CAS  Google Scholar 

  • Harris, J.G., Yung, K.H.: Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99, 12021–12024 (1995)

    Article  CAS  Google Scholar 

  • Jeremias, F., Fröhlich, D., Janiak, C., Henninger, S.K.: Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Adv. 4, 24073 (2014)

    Article  CAS  Google Scholar 

  • Joos, L., Swisher, J. a., Smit, B.: Molecular simulation study of the competitive adsorption of H2O and CO2 in zeolite 13X. Langmuir (2013). doi:10.1021/la403824g

    Google Scholar 

  • Kaneko, K., Cracknell, R.F., Nicholson, D.: Nitrogen adsorption in slit pores at ambient temperatures: Comparison of simulation and experiment. Langmuir. 10, 4606–4609 (1994)

    Article  CAS  Google Scholar 

  • Kiener, C., Muller, U., Schubert, M.: Unitede States Patent Application Publication, (2009)

  • Lima, A.E.O., Gomes, V.A.M., Lucena, S.M.P: Theoretical Study of CO2:N2 adsorption in Faujasite impregnated with monoethanolamine. Brazilian J. Chem. Eng. 32, 663–669 (2015)

    Article  Google Scholar 

  • Liu, B., Smit, B.: Comparative Molecular Simulation Study of CO2/N2 and CH4/N2 separation in zeolites and metal–organic frameworks. Langmuir. 25, 5918–5926 (2009)

    Article  CAS  Google Scholar 

  • Liu, J., Wang, Y., Benin, A.I., Jakubczak, P., Willis, R.R., LeVan, M.D.: CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir. 26, 14301–14307 (2010)

    Article  CAS  Google Scholar 

  • Lucena, S.M.P., Pereira, J.A.F.R., Cavalcante, C.L.: Structural analysis and adsorption sites of xylenes in AlPO4-5 and AlPO4-11 using molecular simulation. Microporous Mesoporous Mater. 88, 135–144 (2006)

    Article  CAS  Google Scholar 

  • Lucena, S.M.P., Snurr, R.Q., Cavalcante, C.L.: Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous Mesoporous Mater. 111, 89–96 (2008)

    Article  CAS  Google Scholar 

  • Lyubchyk, A., Esteves, I.A.A.C., Cruz, F.J.A.L., Mota, J.P.B: Experimental and theoretical studies of supercritical methane adsorption in the MIL-53 (Al) metal organic framework. J. Phys. Chem. C. 53, 20628–20638 (2011)

    Article  Google Scholar 

  • Mulliken, R. S.: Electronic population analysis on LCAO–MO molecular wave functions I. J. Chem. Phys. 23, 1833–1840 (1955)

    Article  CAS  Google Scholar 

  • Nguyen, P.T.M., Do, D.D., Nicholson, D.: Computer simulation of benzene-water mixture adsorption in graphitic slit pores. J. Phys. Chem. C. 116, 13954–13963 (2012)

    Article  CAS  Google Scholar 

  • Peng, X., Lin, L.-C., Sun, W., Smit, B.: Water adsorption in metal-organic frameworks with open-metal sites. AIChE J. 61, 677–687 (2015)

    Article  CAS  Google Scholar 

  • Ramachandran, C.E., Chempath, S., Broadbelt, L.J., Snurr, R.Q.: Water adsorption in hydrophobic nanopores: Monte Carlo simulations of water in silicalite. Microporous Mesoporous Mater. 90, 293–298 (2006)

    Article  CAS  Google Scholar 

  • Ramsahye, N.A., Maurin, G., Bourrelly, S., Llewellyn, P.L., Loiseau, T., Serre, C., Férey, G.: On the breathing effect of a metal-organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments. Chem. Commun. (Camb). 31, 3261–3263 (2007)

    Article  Google Scholar 

  • Righini, R., Maki, K., Klein, M.L.: An Intermolecular Potential for Methane. Chem. Phys. Lett. 80, 301–305 (1981)

    Article  CAS  Google Scholar 

  • Stubbs, J.M., Potoff, J.J., Siepmann, J.I.: Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes. J. Phys. Chem. B. 108, 17596–17605 (2004)

    Article  CAS  Google Scholar 

  • Talu, O.: Needs, status, techniques and problems with binary gas adsorption experiments. Adv. Colloid Interface Sci. 76–77, 227–269 (1998)

    Article  Google Scholar 

  • Vega, C., Abascal, J.L.F., Conde, M.M., Aragones, J.L.: What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2008)

    Article  Google Scholar 

  • Vicent-Luna, J.M., Gutiérrez-Sevillano, J.J., Anta, J.A., Calero, S.: Effect of Room-Temperature Ionic Liquids on CO2 Separation by a Cu-BTC Metal-Organic Framework. J. Phys. Chem. C. 117, 20762–20768 (2013)

    Article  CAS  Google Scholar 

  • Wang, Y., LeVan, M.D.: Adsorption equilibrium of binary mixtures of carbon dioxide and water vapor on zeolites 5 A and 13X. J. Chem. Eng. Data. 55, 3189–3195 (2010)

    Article  CAS  Google Scholar 

  • Wick, C.D., Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 4. United-atom description of linear and branched alkenes and alkylbenzenes. J. Phys. Chem. B. 104, 8008–8016 (2000)

    Article  CAS  Google Scholar 

  • Yazaydin, A.O., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Willis, R.R., Snurr, R.Q.: Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)

    Article  CAS  Google Scholar 

  • Yilmaz, B., Trukhan, N., Müller, U.: Industrial outlook on zeolites and metal organic frameworks. Chinese J. Catal. 33, 3–10 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JAC acknowledges financial support provided by the Brazilian research agencies, CAPES and CNPq. We thank BASF for providing MOF samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião M. P. Lucena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3933 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, J.A., Lima, A.E.O., Rodrigues, A.E. et al. Computer simulation of adsorption and sitting of CO2, N2, CH4 and water on a new Al(OH)-fumarate MOF. Adsorption 23, 423–431 (2017). https://doi.org/10.1007/s10450-017-9872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9872-7

Keywords

Navigation