Skip to main content

Advertisement

Log in

Amino-modified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this work, solid wastes from the flocculation step of a drinking water treatment plant were used as starting material to obtain CO2 adsorbents upon thermal treatment and a pillaring strategy. Thermally treated solid waste and pillared materials were characterized by XRD, FTIR, TGA, N2 adsorption–desorption isotherms at 77 K, XPS and elemental analysis. From the characterization results, it was found that the introduction of silica pillars was successful, leading to heterostructured materials with higher specific surface area and pore volume. In order to improve the CO2 adsorption capacity, pillared materials were functionalized by grafting with (3-aminopropyl)triethoxysilane (APTES)and impregnation with polyethylenimine (PEI). Pillared materials could be loaded with up to 50 wt% PEI. PEI-impregnated pillared adsorbents were tested for CO2 adsorption at 298 and 348 K and CO2/N2 adsorption at 348 K using a Magnetic Suspension Balance equipped with a mixture gas dosing (Rubotherm, Germany). Langmuir and Sips models were used to fit monocomponent and mixture experimental data, considering two different sites for CO2 adsorption. At 1 bar, 50PEI-SiFe (loaded with 50 wt% PEI) adsorbed 2.5 and 3.6 mmol CO2 g−1 at 298 and 348 K, respectively and exhibited an extremely high CO2/N2 selectivity (above 150 mol CO2/mol N2 at 348 K). Nevertheless, PEI loaded adsorbents still exhibit a lower amine efficiency as compared to APTES-grafted counterparts, due to diffusion restrictions caused by the high viscosity of the impregnated polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Almeida, V.C., Silva, R., Acerce, M., Pezoti, O. Jr., Cazetta, A.L., Martins, A.C., Huang, X., Chhowalla, M., Asefa, T.: N-doped ordered mesoporous carbons with improved charge storage capacity by tailoring N-dopant density with solvent-assisted synthesis. J. Mater. Chem. A. 2, 15181–15190 (2014)

    Article  CAS  Google Scholar 

  • Andersen F.A. and Brecevié L.J.: Infrared Spectra of Amorphous and Crystalline Calcium Carbonate. Acta. Chem. Scand. 45, 1018–1024 (1991)

    Article  CAS  Google Scholar 

  • Bacsik, Z., Hedin, N.: Effects of carbon dioxide captured from ambient air on the infrared spectra of supported amines. Vib. Spectrosc. 87, 215–221 (2016)

    Article  CAS  Google Scholar 

  • Bacsik, Z., Ahlsten, N., Ziadi, A., Zhao, G., Garcia-Bennet, A.E., Martín-Matute, B., Hedin, N.: Mechanisms and kinetics for sorption of CO2 on bicontinuous mesoporous silica modified with n-propylamine. Langmuir. 27, 11118–11128 (2011)

    Article  CAS  Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  • Belmabkhout, Y., Serna-Guerrero, R., Sayari, A.: Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for CO2 separation. Adsorption. 17, 395–401 (2011)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Caplow, M.: Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90(24), 6795–6803 (1968)

    Article  CAS  Google Scholar 

  • Cecilia, J.A., García-Sancho, C., Franco, F.: Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties. Microporous Mesoporous Mater. 176, 95–102 (2013)

    Article  CAS  Google Scholar 

  • Chen, Y.H., Lu, D.L.: CO2 capture by kaolinite and its adsorption mechanism. Appl. Clay Sci. 104, 221–228 (2015)

    Article  CAS  Google Scholar 

  • Choi, S., Drese, J.D., Jones, C.W.: Absorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem. 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  • Correia, L.M., Saboya R.M.A., Campelo, N.S., Cecilia, J.A., Rodríguez-Castellón, E., Cavalcante, C.L. Jr., Silveira, R.V.: Characterization of calcium oxide catalysts from natural sources and their applications in transesterification of sunflower oil. Bioresour. Technol. 151, 207–213 (2014)

    Article  CAS  Google Scholar 

  • Correia, L.M., Campelo, N.S., Novaes, D.S., Cavalcante, C.L. Jr., Cecilia, J.A., Rodríguez-Castellón, E., Vieira, R.S.: Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem. Eng. J. 269, 35–43 (2015)

    Article  CAS  Google Scholar 

  • Darunte, L.A., Walton, K.S., Sholl, D.S., Jones, C.W.: CO2 capture via adsorption in amine-functionalized sorbents. Curr. Opin. Chem. Eng. 12, 82–90 (2016)

    Article  Google Scholar 

  • Didas, S.A., Sakwa-Novak, M.A., Foo, G.S., Sievers, C., Jones, C.W.: Effect of amine surface coverage on the co-adsorption of CO2 and water: spectral deconvolution of adsorbed species. J. Phys. Chem. Lett. 5, 4194–4200 (2014)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption analysis: Equilibria and kinetics. vol. 2, p. 892, Imperial College Press, London (1998)

    Google Scholar 

  • Donaldson, T.L. and Nguyen, Y.N.: Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Ind. Eng. Chem. Fundam. 19, 260–266 (1980)

    Article  CAS  Google Scholar 

  • Drage, T.C., Arenillas, A., Smith, K.M., Snape, C.E.: Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous Mesoporous Mater. 116, 504–512 (2008)

    Article  CAS  Google Scholar 

  • Dreisbach, F., Staudt, R., Keller, J.U.: High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorption 5, 215–227 (1999)

    Article  CAS  Google Scholar 

  • Elkhalifah, A.E.I., Maitra, S., Azmi Bustam, M., Murugesan, T.: Effects of exchanged ammonium cations on structure characteristics and CO2 adsorption capacities of bentonite clay. Appl. Clay Sci. 83, 391–398 (2013)

    Article  Google Scholar 

  • Farmer, V.C.: Infrarred Spectra Minerals, p. 331, Mineralogical Society, UK (1974)

    Book  Google Scholar 

  • Galarneau, A., Barodawalla, A., Pinnavaia, T.J.: Porous clay heterostructures formed by gallery-templated synthesis. Nature. 374, 529–531 (1995)

    Article  CAS  Google Scholar 

  • Heydari-Gorji, A., Belmabkhout, Y., Sayari, A.: Degradation of amine-supported CO 2adsorbents in the presence of oxygen- containing gases. Microporous Mesoporous Mater. 145, 146–149 (2011)

    Article  CAS  Google Scholar 

  • Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption of carbon dioxide on modified mesoporous materials in the presence of water vapor. Stud. Surf. Sci. Catal 154, 2995–3002 (2004)

    Article  Google Scholar 

  • Hiyoshi, N., Yogo, K., Yashima, T.: Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater. 84, 357–365 (2005)

    Article  CAS  Google Scholar 

  • Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Linden, P.J., Dai, X., Maskell, K., Johnson, C.A.: Climate Change: The Scientific Basis, Intergovernmental Panel on Climate Change. The Press Syndicate of the University of Cambridge, Cambridge (2001)

    Book  Google Scholar 

  • Hu, J. and Liu, H.: CO2 adsorption on porous materials: Experimental and simulation study. Adv. CO Convers. Util. 14, 209–232 (2010)

    Google Scholar 

  • Kim, S-N., Son, W-J., Choi, J., Ahn W-S.: CO2 adsorption using amine-functionalized mesoporous silica preprared via anionic surfactant-mediated synthesis. Microporous Mesoporous Mater. 115, 497–503 (2008)

    Article  CAS  Google Scholar 

  • Labreche, Y., Fan, Y., Rezaei, F., Lively, R.P., Jones, C.W., Koros, W.J.: Poly(amide-imide)/Silica supported PEI hollow fiber sorbents for post combustion CO2 Capture by RTSA. Appl. Mater. Interfaces. 6(21), 19336–19346 (2014)

    Article  CAS  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Lee, S. and Park, S.: A review on solid adsorbents for carbon dioxide capture. Ing. Eng. Chem. Res. 23, 1–11 (2015)

    Google Scholar 

  • Liu, B., Smit, B.: Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2by ZIFs. J. Phys. Chem. C. 114, 8515–8522 (2010)

    Article  CAS  Google Scholar 

  • Liu, F., Li, W., Zhao, J., Li, W., Chen, D., Sun, L., Wang, L., Li, R.: Covalent grafting of polyethylenimine on hidroxylated three-dimensional graphene for superior CO2capture. J. Mater. Chem. A. 3, 12252–12258 (2015)

    Article  CAS  Google Scholar 

  • Madejová, J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10 (2003)

    Article  Google Scholar 

  • McCabe, R.W., Adams, J.M.: Clay minerals as catalysts. Dev. Clay Sci. 5, 491–538. (2013)

    Article  CAS  Google Scholar 

  • McCarty, R.D. and Arp, V.D.: A new wide range equation of state for helium. Adv. Cryo. Eng. 35, 1465–1475 (1990)

    CAS  Google Scholar 

  • Mebane, D.S., Kress, J.D., Storlie, C.B., Fauth, D.J., Gray, M.L., Li, K.: Transport, zwitterions, and the role of water for CO2 adsorption in mesoporous silica-supported amine sorbents. J. Phys. Chem. C. 117, 26617–26627 (2013)

    Article  CAS  Google Scholar 

  • Mello, M.R., Phanon, D., Silveira, G.Q., Llewellyn, P.L., Ronconi, C.M.: Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater. 143, 174–179 (2011)

    Article  CAS  Google Scholar 

  • Occelli, M.L.: Surface properties and cracking activity of delaminated clay catalysts. Catal. Today. 2, 339–355 (1988)

    Article  CAS  Google Scholar 

  • Pera-Titus, M.: Porous inorganic membranes for CO 2capture: Present and prospects. Chem. Rev. 114, 1413–1492 (2014)

    Article  Google Scholar 

  • Pirngruber, G.D., Cassiano-Gaspar, S., Louret, S., Chamonnot, A., Delfort, B.: Amines immobilized on a solid support for postcombustion CO 2capture – A preliminary analysis of the performance in a VSA or TSA process based on the adsorption isotherms and kinetic data. Energy Procedia 1, 1335–1342 (2009)

    Article  CAS  Google Scholar 

  • Qi, G., Wang, Y., Estevez, L., Duan, X., Anako, N., Park, A.A., Li, W., Jones, C.W., Giannelis, P.: High efficiency nanocomposite sorbents for CO 2capture based on amine-functionalized mesoporous capsules. Energy Environ. Sci. 4, 444–452 (2011)

    Article  CAS  Google Scholar 

  • Rinker, E., Ashour, S.S., Sandall, O.C., O.C: Absorption of carbon dioxide into aqueous blends of diethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 39, 4346–4356 (2000)

    Article  CAS  Google Scholar 

  • Samanta, A., Zhao, A., Shimizu, G.K.H., Sarkar, P., Gupta, R.: Post-Combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 51, 1438–1463 (2012)

    Article  CAS  Google Scholar 

  • Sanz-Pérez, E.S., Olivares-Marin, M., Arencibia, A., Sanz, R., Calleja, G., Maroto-Valler, M.M.: CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions. Int. J. Greenh. Gas Control 17, 366–375 (2013)

    Article  Google Scholar 

  • Sanz-Pérez, E.S, Arencibia, A, Sanz, R., Calleja, G.: New developments on carbon dioxide capture using amine-impregnated silicas. Adsorption 22, 609–619 (2016)

    Article  Google Scholar 

  • Sayari, A., Belmabkhout, Y.: Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. J. Am. Chem. Soc. 132, 6312–6314 (2010)

    Article  CAS  Google Scholar 

  • Son, W.J., Choi, J.K., Ahn, W.S.: Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous Mesoporous Mater. 113, 31–40 (2008)

    Article  CAS  Google Scholar 

  • Soriano, M.D., Cecilia, J.A., Natoli, A., Jiménez-Jiménez, J., López Nieto, J.M., Rodríguez-Castellón, E.: Vanadium oxide supported on porous clay heterostructure for the partial oxidation of hydrogen sulphide to sulfur. Catal. Today. 254, 36–42 (2015)

    Article  CAS  Google Scholar 

  • Span, R., Wagner, W.: A new equation of state for carbon dioxide covering dioxide the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data. 25, 1509–1596 (1996)

    Article  Google Scholar 

  • Span, R., Lemmon, E.W., Jacobsen, R.T., Wagner, W., Yokozeki, A.: A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data. 29, 1361–1433 (2000)

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015)

    CAS  Google Scholar 

  • Vaccari, A.: Clays and catalysis: a promising future. Appl. Clay. Science. 14, 161–198 (1999)

    Article  CAS  Google Scholar 

  • Valverde, J.M., Sanchez-Jimenez, P.E., Perez-Maqueda, L.A.: Ca-looping for post combustion CO2 capture: a comparative analysis on the performances of dolomite and limestone. Appl. Energy. 138, 202–215 (2015)

    Article  CAS  Google Scholar 

  • Vanerek, A., Alince, B., Van De Ven, T.G.M: Delamination and flocculation efficiency of sodium-activated kaolin and montmorillonite. Colloid Surf. A. 273, 193–201 (2006)

    Article  CAS  Google Scholar 

  • Vilarrasa-Garcia, E., Ortigosa Moya, E.M., Cecilia, J.A., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on amine modified mesoporous silicas: Effect of the progressive disorder of the honeycomb arrangement. Microporous Mesoporous Mater. 209, 172–183 (2015)

    Article  CAS  Google Scholar 

  • Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante Jr., C.L., Jiménez-Jiménez, J., Azevedo, D.C.S., Rodríguez-Castellón, E.: CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous Mesoporous Mater. 187, 125–134 (2014)

    Article  Google Scholar 

  • Wang, X., Schwartz, V., Clark, J.C., Ma, X., Overbury, S.H., Xu, X., Song, C.: Infrared study of CO2 sorption over “Molecular Basket” sorbent consisting of polyethylenimine-modified mesoporous molecular sieve. J. Phys. Chem. C. 113, 7260–7268 (2009)

    Article  CAS  Google Scholar 

  • Wang, W., Xiao, J., Wei, X., Ding, J., Wang, X., Song, C.: Development of a new clay supported polyethylenimine composite for CO2 capture. Appl. Energy. 113, 334–341 (2014)

    Article  CAS  Google Scholar 

  • Wang, K., Hu, X., Zhao, P., Yin, Z.: Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture. Appl. Energy. 165, 14–21 (2016)

    Article  CAS  Google Scholar 

  • Wilcox, J.: Carbon Capture. Springer, New York (2012)

    Book  Google Scholar 

  • Wolsky, A.M., Daniels, E.J., Jody, B.J: CO2 capture from the flue gas of conventional fossil-fuel-fired power plants. Environ. Prog. 13, 214–219 (1994)

    Article  CAS  Google Scholar 

  • Xu, X.C., Andresen, J.M., Song, C., Miller, B.G., Scaroni, A.W. Proceeding of the 18th Annual International Pittsburgh Coal Conference, New South Wales, Australia, (2001).

  • Xu, X.C., Andresen, J.M., Song, C., Miller, B.G., Scaroni, A.W.: Preprints of Symposia––American Chemical Society, Division of Fuel. Chemistry. 47(1), 67–68 (2002a)

    CAS  Google Scholar 

  • Xu, X.C, Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16, 1463–1469 (2002b)

    Article  CAS  Google Scholar 

  • Xu, X.C, Song, C., Andresen, J.M., Miller, B.G., Scaroni, A.W.: Preparation and characterization of novel CO2 molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater. 62, 29–45 (2003)

    Article  CAS  Google Scholar 

  • Yue, M.B., Chun, Y., Cao, Y., Dong, X., Zhu, J.H.: Novel CO2-capturer derived from the as-prepared SBA-15 occluded by template. Adv. Funct. Mater. 16, 1717–1722 (2006)

    Article  CAS  Google Scholar 

  • Zeleñák, V., Badaničová, M., Halamová, D., Čejka, J., Zukal, A., Murafa, N., Goerigk, G.: Amine-modified ordered mesoporous silica: Effect of pore size on carbon dioxide capture. Chem. Eng. J. 144, 336–342 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank project CTQ2015-68951-C3-3-R (Ministerio de Economía y Competitividad, Spain) and FEDER funds, project P12-RNM-1565 (Excelencia, Junta de Andalucía, Spain) and European project 295156 FP7-PEOPLE-2011-IRSES for financial support. Authors also thank Empresa Muncipal de Aguas de Málaga (EMASA, España) to collaborate and support this work. E. Vilarrasa-Garcia thanks CAPES/PNPD (Brazilian Ministry of Education) for post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. S. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilarrasa-García, E., Cecilia, J.A., Rodríguez Aguado, E. et al. Amino-modified pillared adsorbent from water-treatment solid wastes applied to CO2/N2 separation. Adsorption 23, 405–421 (2017). https://doi.org/10.1007/s10450-017-9871-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9871-8

Keywords

Navigation