Skip to main content
Log in

An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The paper presents the results of research into the effects of the additional activation process of the commercial activated carbon WG-12 with KOH, ZnCl2, KOH/ZnCl2 and K2CO3 as activating agents on the formation of the porous structure and the adsorptive properties of that material. The numerical analyses were carried out on the basis of the isotherms of nitrogen adsorption with the use of the method based on the Brunauer-Emmett-Teller, the Dubinin-Radushkevich equations, the non-local and the quenched solid density functional theories as well as the LBET method with the unique fast multivariate procedure of porous structure identification and the new LBET class adsorption models. Also, the research in question yielded information regarding the usefulness of the said methods of carbonaceous adsorbent porous structure description for practical technological applications and scientific research, as well as the possibilities to make practical use of the research results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

mA :

The total adsorption (mmol/g), m hA - the number of primary sites at the adsorbate pores

VhA :

The volume of a space accessible for the first layer adsorption (cm3/g)

θ kj :

The coverage ratio of j th layer at k th type clusters

θ :

The coverage ratio of layers n >1

π :

The relative pressure

α :

The geometrical parameter of the microporous structure

β :

The average number of sites provided by (n-1)-th layer for the n-th layer, n 2,k, averaged over all clusters

Q A and Q C :

The adsorption energies at the first (Q A ) and higher layers (Q C ) (J/mol)

R :

The gas constant

T :

Temperature

B Ak , B fk :

The energy parameters

References

  • Bajaj, P., Dhawan, A.: PAN-based activated carbon fibres: production, characterization and applications. Indian J. Fibre Text. Res. 22, 222–235 (1997)

    CAS  Google Scholar 

  • Bansal, R.C., Donnet, J.B., Stoeckli, R.: Active Carbon. Marcel Dekker, New York (1988)

    Google Scholar 

  • Benaddi, H., Bandosz, J., Jagiello, J., Schwarz, J.A., Rouzaud, J.N., Legras, D., Béguin, F.: Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon. 38(5), 669–674 (2000)

    Article  CAS  Google Scholar 

  • Bhatia, S.K.: Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir. 18(18), 6845–6856 (2002)

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  • Chmiel, G., Lajtar, L., Sokołowski, S., Patrykiejew, A.: Adsorption in energetically heterogeneous slit-like pores: comparison of density functional theory and computer simulations. J. Chem. Soc. Faraday Trans. 90, 1153–1156 (1994)

    Article  CAS  Google Scholar 

  • Cuerda-Correa, E.M., Díaz-Díez, M.A., Macías-García, A., Gañán-Gómez, J.: Preparation of activated carbons previously treated with sulfuric acid: a study of their adsorption capacity in solution. Appl. Surf. Sci. 252(17), 6042–6045 (2006)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B. 110(35), 17531–17538 (2006)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Polyakov, N.S., Kataeva, L.I.: Basic properties of equations for physical vapor adsorption in micropores of carbon adsorbents assuming a normal micropore distribution. Carbon. 29(4–5), 481–488 (1991)

    Article  CAS  Google Scholar 

  • Duda, J.T., Kwiatkowski, M., Milewska-Duda, J.: Computer modeling and analysis of heterogeneous structures of microporous carbonaceous materials. J. Mol. Model. 11(4–5), 416–430 (2005)

    Article  CAS  Google Scholar 

  • Foo, K.Y., Hameed, B.H.: Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Eng. J. 173(20), 385–390 (2011)

    Article  CAS  Google Scholar 

  • Foo, K.Y., Hameed, B.H.: Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresour. Technol. 111, 425–432 (2012)

    Article  CAS  Google Scholar 

  • Franklin, R.E.: Crystallite growth in graphitizing and nongraphitizing carbons. Proc. R Soc. A 209 196–218 (1951)

    Article  CAS  Google Scholar 

  • Fripiat, J.J., Gatineau, L., van Damme, H.: Multilayer physical adsorption on fractal surfaces. Langmuir. 2(5), 562–567 (1986)

    Article  CAS  Google Scholar 

  • Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Preparation of activated carbon from beet molasses and TiO2 as the adsorption of CO2. Acta Phys. Polonica A. 129(3), 158–161 (2016)

    Article  CAS  Google Scholar 

  • Grześkowiak, M., Wróbel, R.J., Moszyński, D., Mozia, S., Grzechulska-Damszel, J., Morawski, A. W., Przepiórski, J.: TiO2 supported on quartz wool for photocatalytic oxidation of hydrogen sulphide. Adsorpt. Sci. Technol. 32(10), 765–772 (2014).

    Article  Google Scholar 

  • ISO 15901-3.: Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption, Part 3: Analysis of Micropores by Gas Adsorption, International Organization for Standardization (2007)

  • Jagiello, J., Ansón, A., Martínez, M.T.: DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption at 77 K. J. Phys. Chem. B. 110, 4531–4534 (2006)

    Article  CAS  Google Scholar 

  • Jagiełło, J., Thommes, M.M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon. 42, 1227–1232 (2004)

    Article  Google Scholar 

  • Kante, K., Nieto-Delgado, C., Rangel-Mendez, J.R., Bandosz, T.J.: Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process. J. Hazard. Mater. 201–202, 141–147 (2011)

    Google Scholar 

  • Kumar, A., Jena, H.M.: Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys. 6, 651–658 (2016)

    Article  Google Scholar 

  • Kwiatkowski, M.: Computer analysis of microporous structure by employing the LBET class models with various variants of the adsorption energy distribution in comparison to the classical equations. Langmuir. 23, 2569–2581 (2007)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M.: Computer analyses of new numerical methods for the description of adsorption process and the reliability of identification of microporous structure parameters. J. Mol. Model. 14, 183–200 (2008)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M.: Use of fast multivariant identification of the parameters of adsorption systems to study the impact of activating agent on microporous structure formation during activation. J. Colloid Interface Sci. 340(1), 1–7 (2009)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M., Broniek, E.: Application of the LBET class adsorption models to the analysis of microporous structure of the active carbons produced from biomass by chemical activation with the use of potassium carbonate. Colloid Surf. A. 427, 47–52 (2013)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M., Wiśniewski, M., Rychlicki, G.: The numerical analysis of the spherical carbon adsorbents obtained from ion-exchange resins in one-step steam pyrolysis. Appl. Surf. Sci. 259, 13–20 (2012)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M., Policicchio, A., Seredych, M., Bandosz, T.J.: Evaluation of CO2 interactions with S-doped nanoporous carbon and its composites with a reduced GO: Effect of surface features on an apparent physical adsorption mechanism. Carbon. 98, 250–258 (2016)

    Article  CAS  Google Scholar 

  • Kwiatkowski, M., Fierro, V., Celzard, A.: Numerical studies of the effects of process conditions on the development of the porous structure of adsorbents prepared by chemical activation of lignin with alkali hydroxides. J. Colloid Interface Sci. 486, 277–286 (2017)

    Article  CAS  Google Scholar 

  • Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A. 437, 3–32 (2013)

    Article  CAS  Google Scholar 

  • Lastoskie, C.M., Gubbins, K.E.: Characterization of porous materials using molecular theory and simulation. Adv. Chem. Eng. 28, 203–250 (2001)

    Article  Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    Article  CAS  Google Scholar 

  • Marsh, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier, Oxford (2006)

    Google Scholar 

  • Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Activated carbons from molasses as CO2 sorbents. Acta Phys. Polonica A. 129(3), 402–404 (2016)

    Article  Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15, 347–365 (2003)

    CAS  Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 47(7), 1617–1628 (2009)

    Article  CAS  Google Scholar 

  • Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon. 36(10), 1469–1472 (1998)

    Article  CAS  Google Scholar 

  • Olivier, J.P., Conklin, W.B., Szombathely, M.V.: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81–89 (1994)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir. 16, 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Neimark, A.V.: Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 22(26), 11171–11179 (2006)

    Article  CAS  Google Scholar 

  • Salame, I.I., Bandosz, T.J.: Comparison of the surface features of two wood-based activated carbons. Ind. Eng. Chem. Res. 39(2), 301–306 (2000)

    Article  CAS  Google Scholar 

  • Seaton, N., Walton, J., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon. 27(6), 853–861 (1989)

    Article  CAS  Google Scholar 

  • Sentorun-Shalaby, C., Ucak-Astarlioglu, M.G., Artok, L., Sarici, C.: Preparation and characterization of activated carbons by onestep steam pyrolysis/activation from apricot stones. Microporous Mesoporous Mater. 88(1–3), 126–134 (2006)

    Article  CAS  Google Scholar 

  • Shahsavand, A., Ahmadpour, A.: Application of optimal RBF neural networks for optimization and characterization of porous materials. Comput. Chem. Eng. 29(10), 2134–2143 (2005)

    Article  CAS  Google Scholar 

  • Sreńscek-Nazzal, J., Kamińska, W., Michalkiewicz, B., Koren, Z.C.: Production, characterization and methane storage potential of KOH activated carbon from sugarcane molasses. Ind. Crops. Prod. 47, 153–159 (2013)

    Article  Google Scholar 

  • Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B.: Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. J. Chem. Eng. Data. 60, 3148–3158 (2015)

    Article  Google Scholar 

  • Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Gesikiewicz-Puchalska, A., Michalkiewicz, B.: Modification of commercial activated carbons for CO2 adsorption. Acta Phy. Polonica A. 129(3), 394–401 (2016)

    Article  Google Scholar 

  • Sun, J.: Pore size distribution model derived from a modified DR equation and simulated pore filling for nitrogen adsorption at 77 K. Carbon. 40, 1051–1062 (2002)

    Article  CAS  Google Scholar 

  • Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir. 22(2), 756–764 (2006)

    Article  CAS  Google Scholar 

  • Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by Reverse Monte Carlo. Langmuir. 16(13), 5761–5773 (2000)

    Article  CAS  Google Scholar 

  • Ustinov, E.A., Do, D.D., Fenelonov, V.B.: Pore size distribution analysis of activated carbons: Application of density functional theory using nongraphitized carbon black as a reference system. Carbon. 44(4), 653–663 (2006)

    Article  CAS  Google Scholar 

  • Vargas, D.P., Giraldo, L., Moreno-Piraján, J.C.: Carbon dioxide and methane adsorption at high pressure on activated carbon materials. Adsorption. 19(6), 1075–1082 (2013)

    Article  CAS  Google Scholar 

  • Vargas, D.P., Giraldo, L., Moreno-Piraján, J.C.: Calorimetric study of the CO2 adsorption on carbon materials. J. Therm. Anal. Calorim. 117, 1299–1309 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is led within the AGH University of Science and Technology Grant No. 11.11.210.217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Kwiatkowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwiatkowski, M., Sreńscek-Nazzal, J. & Michalkiewicz, B. An analysis of the effect of the additional activation process on the formation of the porous structure and pore size distribution of the commercial activated carbon WG-12. Adsorption 23, 551–561 (2017). https://doi.org/10.1007/s10450-017-9867-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-017-9867-4

Keywords

Navigation