Skip to main content
Log in

High-pressure sour gas adsorption on zeolite 4A

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In an effort to measure self-consistent adsorption isotherms for sour gas species on zeolite 4A, two high-pressure manometric adsorption instruments have been built for measurement up to p = 225 bar. A comparison of CO2 adsorption up to p = 200 bar on Fitrasorb F400 activated carbon shows the reliability of these instruments. For the purpose of this work, high purity zeolite 4A was synthesized and characterized by SEM/EDX, XRD, FTIR, and DLS. High-pressure adsorption isotherms (absolute and excess) for CO2, COS, CH4 and H2S adsorption on zeolite 4A have been reported for T = 0, 25, and 50 °C along with corresponding parameters for the modified Tóth isotherm. The adsorption of COS on zeolite 4A showed some unexpected results, where (i) lower temperature isotherms were dominated by size effects, (ii) the adsorption capacity was half that of CO2 or H2S, and (iii) computational calculations for HOMO bond orientation indicate that COS should be excluded from zeolite 4A, despite the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Utilizing a cubic spline fitting procedure allows determining the isosteric enthalpy of adsorption without prior fitting to an isotherm equation. In this work, the isosteric enthalpy of adsorption is only calculated in ranges where experimental values of the absolute amount adsorbed have been determined.

References

  • Aldrich. Mineral Adsorbents, Filter Agents and Drying Agents, AL-143. www.sigmaaldrich.com (2016). Accessed Apr 2016

  • Baker, R.W., Lokhandwala, K.: Natural gas processing with membranes: an overview. Ind. Eng. Chem. Res. 47(7), 2109–2121 (2008)

    Article  CAS  Google Scholar 

  • Bering, B., Dubinin, M., Serpinsky, V.: Theory of volume filling for vapor adsorption. J. Colloid Interface Sci. 21(4), 378–393 (1966)

    Article  CAS  Google Scholar 

  • Breck, D.W.: Zeolite Molecular Sieves: Structure, Chemistry, and Use, vol. 4. Wiley, New York (1974)

    Google Scholar 

  • Cavenati, S., Grande, C.A., Rodrigues, A.E.: Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data 49(4), 1095–1101 (2004)

    Article  CAS  Google Scholar 

  • Chen, L., Lin, L., Xu, Z., Zhang, T., Xin, Q., Ying, P., Li, G., Li, C.: Fourier transform-infrared investigation of adsorption of methane and carbon monoxide on HZSM-5 and Mo/HZSM-5 zeolites at low temperature. J. Catal. 161(1), 107–114 (1996)

    Article  CAS  Google Scholar 

  • Cotton, F.A.: Chemical Applications of Group Theory. Wiley, New Delhi (2008)

    Google Scholar 

  • Deering, C.E., Cairns, E.C., McIsaac, J.D., Read, A.S., Marriott, R.A.: The partial molar volumes for water dissolved in high-pressure carbon dioxide from T = (318.28 to 369.40) K and pressures to p = 35 MPa. J. Chem. Thermodyn. 93, 337–346 (2016)

    Article  CAS  Google Scholar 

  • Defay, R., Prigogine, I., Bellemans, A., Everett, D.: Surface Tension and Adsorption. Longmans, London (1966)

    Google Scholar 

  • Dennington, R.D., Keith, T.A., Millam, J.M.: GaussView 5.0. 8. Gaussian Inc, Wallingford (2008)

  • Dubinin, M.: Adsorption in micropores. J. Colloid Interface Sci. 23(4), 487–499 (1967)

    Article  CAS  Google Scholar 

  • Frisch, M., Trucks, G., Schlegel, H.B., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.: Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT 200 (2009)

  • Gandhidasan, P., Al-Farayedhi, A.A., Al-Mubarak, A.A.: Dehydration of natural gas using solid desiccants. Energy 26(9), 855–868 (2001)

    Article  CAS  Google Scholar 

  • Gensterblum, Y., Van Hemert, P., Billemont, P., Busch, A., Charriere, D., Li, D., Krooss, B., De Weireld, G., Prinz, D., Wolf, K.-H.: European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: activated carbon. Carbon 47(13), 2958–2969 (2009)

    Article  CAS  Google Scholar 

  • Grande, C.A., Blom, R.: Cryogenic Adsorption of Methane and Carbon Dioxide on Zeolites 4A and 13X. Energy Fuels 28(10), 6688–6693 (2014)

    Article  CAS  Google Scholar 

  • Harris, D.C.: Quantitative Chemical Analysis. Macmillan, London (2010)

    Google Scholar 

  • Hauchhum, L., Mahanta, P.: Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int. J. Energy Environ. Eng. 5(4), 349–356 (2014). doi:10.1007/s40095-014-0131-3

    Article  CAS  Google Scholar 

  • Haq, N., Ruthven, D.M.: Chromatographic study of sorption and diffusion in 4A zeolite. J. Colloid Interface Sci. 112(1), 154–163 (1986)

    Article  CAS  Google Scholar 

  • Hückel, E.: Theory of heat evolved in capillary condensation. Trans. Faraday Soc. 28, 382–386 (1932)

    Article  Google Scholar 

  • Humayun, R., Tomasko, D.L.: High-resolution adsorption isotherms of supercritical carbon dioxide on activated carbon. AIChE J. 46(10), 2065–2075 (2000)

    Article  CAS  Google Scholar 

  • Jensen, N.K., Rufford, T.E., Watson, G., Zhang, D.K., Chan, K.I., May, E.F.: Screening zeolites for gas separation applications involving methane, nitrogen, and carbon dioxide. J. Chem. Eng. Data 57(1), 106–113 (2011)

    Article  Google Scholar 

  • Kohl, A.L., Nielsen, R.: Gas Purification. Gulf Professional Publishing, Houston (1997)

    Google Scholar 

  • Krooss, B., Van Bergen, F., Gensterblum, Y., Siemons, N., Pagnier, H., David, P.: High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals. Int. J. Coal Geol. 51(2), 69–92 (2002)

    Article  CAS  Google Scholar 

  • Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51(3), 785–850 (2006)

    Article  CAS  Google Scholar 

  • Maddox, R., Morgan, D.: Gas Conditioning and Processing, Gas Treating and Sulfur Recovery, vol. 4. JM Campbell, Norman (2006)

    Google Scholar 

  • Mohr, R., Vorkapic, D., Rao, M., Sircar, S.: Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique. Adsorption 5(2), 145–158 (1999)

    Article  CAS  Google Scholar 

  • Neimark, A.V., Ravikovitch, P.I.: Calibration of pore volume in adsorption experiments and theoretical models. Langmuir 13(19), 5148–5160 (1997)

    Article  CAS  Google Scholar 

  • Popoola, L.T., Grema, A.S., Latinwo, G.K., Gutti, B., Balogun, A.S.: Corrosion problems during oil and gas production and its mitigation. Int. J. Ind. Chem. 4(1), 1–15 (2013)

    Article  Google Scholar 

  • Preston-Thomas, H.: The International Temperature Scale of 1990 (ITS-90). Metrologia 27(1), 3–10 (1990)

    Article  Google Scholar 

  • Rege, S.U., Yang, R.T.: A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina. Chem. Eng. Sci. 56(12), 3781–3796 (2001)

    Article  CAS  Google Scholar 

  • Rogner, H.-H.: An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ. 22(1), 217–262 (1997)

    Article  Google Scholar 

  • Rollmann, L., Valyocsik, E., Shannon, R.: Zeolite molecular sieves. Inorg. Synth. 22, 61–68 (2007)

    Google Scholar 

  • Rudolph, W.W., Fischer, D., Irmer, G.: Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2—water system. Appl. Spectrosc. 60(2), 130–144 (2006)

    Article  CAS  Google Scholar 

  • Sakurovs, R., Day, S., Weir, S., Duffy, G.: Application of a modified Dubinin–Radushkevich equation to adsorption of gases by coals under supercritical conditions. Energy Fuels 21(2), 992–997 (2007)

    Article  CAS  Google Scholar 

  • Setzmann, U., Wagner, W.: A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa. J. Phys. Chem. Ref. Data 20(6), 1061–1155 (1991)

    Article  CAS  Google Scholar 

  • Sharma, S.K., Misra, A.K., Clegg, S.M., Barefield, J.E., Wiens, R.C., Acosta, T.: Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. Philos. Trans. Royal Soc. Lond. A 368(1922), 3167–3191 (2010)

    Article  CAS  Google Scholar 

  • Siemons, N., Busch, A.: Measurement and interpretation of supercritical CO2 sorption on various coals. Int. J. Coal Geol. 69(4), 229–242 (2007)

    Article  CAS  Google Scholar 

  • Sircar, S.: Measurement of gibbsian surface excess. AIChE J. 47(5), 1169–1176 (2001)

    Article  CAS  Google Scholar 

  • Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1596 (1996)

    Article  CAS  Google Scholar 

  • Stevens Jr., R.W., Siriwardane, R.V., Logan, J.: In situ Fourier transform infrared (FTIR) investigation of CO2 adsorption onto zeolite materials. Energy Fuels 22(5), 3070–3079 (2008)

    Article  CAS  Google Scholar 

  • Toth, J.: State equations of the solid-gas interface layers. Acta Chim. Acad. Sci. Hungar. 69(3), 311–328 (1971)

    CAS  Google Scholar 

  • Ugal, J.R., Hassan, K.H., Ali, I.H.: Preparation of type 4A zeolite from Iraqi kaolin: characterization and properties measurements. J. Assoc. Arab Univ. Basic Appl. Sci. 9(1), 2–5 (2010)

    CAS  Google Scholar 

  • van Hemert, P., Bruining, H., Rudolph, E.S.J., Wolf, K.-H.A., Maas, J.G.: Improved manometric setup for the accurate determination of supercritical carbon dioxide sorption. Rev. Sci. Instrum. 80(3), 035103 (2009)

    Article  Google Scholar 

  • Vega, D.O.O.: A New Wide Range Equation of State for Helium-4. Texas A&M University, College Station (2013)

    Google Scholar 

  • Ward, Z.T., Deering, C.E., Marriott, R.A., Sum, A.K., Sloan, E.D., Koh, C.A.: Phase equilibrium data and model comparisons for H2S hydrates. J. Chem. Eng. Data 60(2), 403–408 (2014)

    Article  Google Scholar 

  • Wong, M.W.: Quantum-chemical calculations of sulfur-rich compounds. In: Topics in Current Chemistry. pp. 1–30. Springer, Berlin (2003)

  • Zarinabadi, S., Samimi, A.: Problems of hydrate formation in oil and gas pipes deals. J. Am. Sci. 8(8), 1007–1010 (2012)

    Google Scholar 

Download references

Acknowledgements

This research has been funded through the Natural Science and Engineering Research Council of Canada (NSERC) and Alberta Sulphur Research Ltd. (ASRL) Industrial Research Chair program in Applied Sulfur Chemistry. The authors are grateful to NSERC and supporting member companies of ASRL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Marriott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3074 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wynnyk, K.G., Hojjati, B., Pirzadeh, P. et al. High-pressure sour gas adsorption on zeolite 4A. Adsorption 23, 149–162 (2017). https://doi.org/10.1007/s10450-016-9841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9841-6

Keywords

Navigation