Skip to main content
Log in

New linear driving force correlation spanning long and short cycle time pressure swing adsorption processes

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A simple, semi-empirical, generalized expression was developed for the LDF mass transfer coefficient k as a function of the half cycle time θ c that encompasses and transitions between the well-known regions governed by the long cycle time constant Glueckauf k and the short cycle time dependent k. This new expression can be used to estimate k = f(θ c ) for any system, irrespective of the loading and irrespective of θ c , no matter if k is in the cycle time dependent region or not. A three times wider transition region between the Glueckauf k and the cycle time dependent k was also established, with the Glueckauf LDF limit now valid for θ c  > 0.3 and the short cycle time limit now valid for θ c  < 0.01. When evaluating this region for several adsorbate-adsorbent systems, the minimum Glueckauf θ c spanned three orders of magnitude from thousands of seconds to just a few seconds, indicating a cycle time dependent k is not necessarily limited to what is normally considered a short cycle time. For virtually any θ c less than this minimum Glueckauf θ c , this new first-of-its-kind expression can be used to readily provide an accurate value of k = f(θ c ). Since the widely accepted half cycle time concept does not apply to the actual simulation of a multi-step, unequal step time, pressure swing adsorption process, the value of k = f(θ c ) from this new expression can be based on either the shortest cycle step in the cycle or a different value of k = f(θ c ) for each cycle step time in the cycle, with validity confirmed either by experiment or by process simulation using the exact solution to the pore diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a(q):

Function of the amount adsorbed in the particle that depends on the type of diffusion process and defined by Eq. (5) or (7)

b(q):

Function of the amount adsorbed in the particle that depends on the type of diffusion process and defined by Eq. (6) or (8)

b :

Affinity parameter in the Langmuir adsorption isotherm, kPa−1

D :

Diffusivity, m2 s−1

D M,g :

Macropore diffusivity, m2 s−1

D m,s :

Micropore diffusivity, m2 s−1

K :

Extracted LDF mass transfer coefficient, s−1

k′:

Glueckauf LDF mass transfer coefficient, s−1

k″:

Alpay and Scott LDF mass transfer coefficient, s−1

P :

Partial pressure of the adsorbate, kPa

P o :

Partial pressure of the adsorbate outside the pellet or crystal, kPa

P o,i :

Initial partial pressure of the adsorbate outside the pellet or crystal, kPa

Q :

Amount adsorbed in the particle, mol kg−1

\(\bar{q}\) :

Volume average amount adsorbed in the particle, mol kg−1

q i :

Initial amount adsorbed in the particle, mol kg−1

q * :

Amount adsorbed in the particle in equilibrium with P o , mol kg−1

q s :

Saturation capacity parameter in the Langmuir adsorption isotherm, mol kg−1

r :

Distance from the center of the particle (pellet or crystal), m

R :

Radius of spherical particle, m

R g :

Ideal gas constant, 8.314 J mol−1 K−1

R p :

Radius of spherical pellet, m

R c :

Radius of spherical crystal, m

t :

Time, s

t c :

Half cycle time, s

T :

Temperature of the particle, K

P :

Amplitude of the pressure perturbation, kPa

ε p :

Pellet porosity

ρ p :

Pellet density, kg m−3

θ c :

Dimensionless half cycle time

ϑ(q):

Function that represents dependency of diffusivity on the amount adsorbed in the particle and equal to b(q)/a(q)

\(\psi \left( {\sqrt {\theta_{c} } } \right)\) :

Correction factor as a function of dimensionless half cycle time, defined by Eq. (26)

\(\phi \left( {\sqrt {\theta_{c} } } \right)\) :

Fermi–Dirac function defined by Eq. (27)

References

  • Alpay, E., Scott, D.M.: The linear driving force model for fast-cycle adsorption and desorption in a spherical particle. Chem. Eng. Sci. 47(2), 499–502 (1992)

    Article  CAS  Google Scholar 

  • Botte, G.G., Zhang, R., Ritter, J.A.: New approximate model for nonlinear adsorption and concentration dependent surface diffusion in a single particle. Adsorption 5, 373–380 (1999)

    Article  CAS  Google Scholar 

  • Botte, G.G., Zhang, R., Ritter, J.A.: On the use of different parabolic concentration profiles for nonlinear adsorption and diffusion in a single particle. Chem. Eng. Sci. 53(24), 4135–4146 (1998)

    Article  Google Scholar 

  • Buzanowski, M.A., Yang, R.T.: Approximations for intraparticle diffusion rates in cyclic adsorption and desorption. Chem. Eng. Sci. 46(10), 2589–2598 (1991)

    Article  CAS  Google Scholar 

  • Buzanowski, M.A., Yang, R.T.: Extended linear driving-force approximation for intraparticle di!usion rates including short times. Chem. Eng. Sci. 44(11), 2683–2689 (1989)

    Article  CAS  Google Scholar 

  • Carta, G.: The linear driving force approximation for cyclic mass transfer in spherical particles. Chem. Eng. Sci. 48(3), 622–625 (1993)

    Article  CAS  Google Scholar 

  • Carta, G., Cincotti, A.: Film model approximation for non-linear adsorption and diffusion in spherical particles. Chem. Eng. Sci. 53, 3483–3488 (1998)

    Article  CAS  Google Scholar 

  • Choong, T.S.Y., Scott, D.M.: The linear driving force model for cyclic adsorption and desorption: the effect of external fluid-film mass transfer. Chem. Eng. Sci. 53(4), 847–851 (1998)

    Article  CAS  Google Scholar 

  • Do, D.D., Mayfield, P.L.J.: A new simplified model for adsorption in a single particle. AIChE J. 33(8), 1397–1400 (1987)

    Article  CAS  Google Scholar 

  • Do, D.D., Nguyen, T.S.: A power law adsorption model and its significance. Chem. Eng. Commun. 72, 171–185 (1988)

    Article  CAS  Google Scholar 

  • Do, D.D., Rice, R.G.: Validity of the parabolic profile assumption in adsorption studies. AIChE J. 32(1), 149–154 (1986)

    Article  CAS  Google Scholar 

  • Doong, S.J., Yang, R.T.: Bulk separation of multicomponent gas mixtures by pressure swing adsorption: pore/surface diffusion and equilibrium models. AIChE J 32, 397–410 (1986)

    Article  CAS  Google Scholar 

  • Gadre, S.A., Ritter, J.A.: New analytical solution for nonlinear adsorption and diffusion in a single particle. Chem. Eng. Sci. 57, 1197–1204 (2002a)

    Article  CAS  Google Scholar 

  • Gadre, S.A., Ritter, J.A.: New model for nonlinear adsorption and diffusion based on a quartic concentration profile approximation. Ind. Eng. Chem. Res. 41(17), 4353–4361 (2002b)

    Article  CAS  Google Scholar 

  • Giesy, T.J., Wang, Y., LeVan, M.D.: Measurement of mass transfer rates in adsorbents: new combined-technique frequency response apparatus and application to CO2 in 13X zeolite. Ind. Eng. Chem. Res. 35, 11509–11517 (2012)

    Article  Google Scholar 

  • Glueckauf, E., Coates, J.J.: Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatogram and on the effectiveness of separation. J. Chem. Soc. 1315–1321 (1947)

  • Glueckauf, E.: Theory of chromatography. Part X. Formulae for diffusion into spheres and their application to chromatography. J. Chem. Soc. Trans. Faraday Soc. 51, 1540–1551 (1955)

    Article  CAS  Google Scholar 

  • Goddard, M., Ruthven, D.M.: Sorption and diffusion of C8 aromatic hydrocarbons in faujasite type zeolites. II Sorption kinetics and intracrystalline diffusivities. Zeolites 6, 275–289 (1986)

    Article  Google Scholar 

  • Haq, N., Ruthven, D.M.: Chromatographic Study of Sorption and Diffusion in 4A Zeolite. J. Colloid Interface Sci. 112(1), 154–163 (1986)

    Article  CAS  Google Scholar 

  • Hills, J.H.: An investigation of the linear driving force approximation to diffusion in spherical particles. Chem. Eng. Sci. 11, 2279–2785 (1986)

    Google Scholar 

  • Hsuen, H.-K.: An improved linear driving force approximation for intraparticle adsorption. Chem. Eng. Sci. 55, 3475–3480 (2000)

    Article  CAS  Google Scholar 

  • Hu, X., Mangano, E., friedrich, D., Ahn, H., Brandani, S.: Diffusion of CO2 in 13X zeolite beads. Adsorption 20, 121–135 (2013)

    Article  Google Scholar 

  • Kapoor, A., Yang, R.T.: Kinetic separation of methane-carbon dioxide mixture by adsorption on molecular sieve carbon. Chem. Eng. Sci. 44(8), 1723–1733 (1989)

    Article  CAS  Google Scholar 

  • Kikkinides, E.S., Yang, R.T.: Further work on approximations for intraparticle diffusion rates in cyclic adsorption and desorption. Chem. Eng. Sci. 48(6), 1169–1173 (1993)

    Article  CAS  Google Scholar 

  • Kim, D.H.: A new linear formula for cyclic adsorption in a particle. Chem. Eng. Sci. 51(17), 4137–4144 (1996)

    Article  CAS  Google Scholar 

  • Kim, Y.-M., Suh, S.-S.: A new mass transfer model for cyclic adsorption and desorption. Korean J. Chem. Eng. 16(3), 401–406 (1999)

    Article  CAS  Google Scholar 

  • Lee, J., Kim, D.H.: High-order approximations for noncyclic and cyclic adsorption in a particle. Chem. Eng. Sci. 53(6), 1209–1221 (1998)

    Article  CAS  Google Scholar 

  • Liaw, C., Wang, J.S.P., Greenkorn, R.A., Chao, K.C.: Kinetics of fixed-bed adsorption: a new solution. AIChE J. 25(2), 376–381 (1979)

    Article  Google Scholar 

  • Li, Z., Yang, R.T.: Concentration profile for linear driving force model for diffusion in a particle. AIChE J. 45(1), 196–200 (1999)

    Article  CAS  Google Scholar 

  • Lopes, F.V.S., Grande, C.A., Riberio, A.M., Loureiro, J.M., Evaggelos, O., Nikolakis, V., Rodrigues, A.E.: Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol. 44, 1045–1073 (2009)

    Article  CAS  Google Scholar 

  • Ma, Y.H., Sun, W., Bhandarkar, M., Wang, J., Miller, G.W.: Adsorption and diffusion of nitrogen, oxygen, argon, and methane in molecular sieve carbon at elevated pressures. Sep. Technol. 1, 90–98 (1991)

    Article  CAS  Google Scholar 

  • Nakao, S.-I., Suzuki, M.: Mass transfer coefficient in cyclic adsorption and desorption. J. Chem. Eng. Jpn. 16(2), 114–119 (1983)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  • Ruthven, D.M., Raghavan, N.S., Hassan, M.M.: Adsorption and diffusion of nitrogen and oxygen in carbon molecular sieve. Chem. Eng. Sci. 41(5), 1325–1332 (1986)

    Article  CAS  Google Scholar 

  • Scott, D.M.: The linear driving force model for cyclic adsorption and desorption: the effect of shape. Chem. Eng. Sci. 49(6), 914–916 (1994)

    Article  CAS  Google Scholar 

  • Sheng, P., Costa, C.A.V.: Modified linear driving force approximations for cyclic adsorption-desorption processes. Chem. Eng. Sci. 52(9), 1493–1499 (1997)

    Article  CAS  Google Scholar 

  • Sircar, S., Hufton, J.R.: Intraparticle adsorbate concentration profile for linear driving force model. AIChE J. 46(3), 659–660 (2000)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Gas Separation by Adsorption Processes. Butterworth, Boston (1987)

    Google Scholar 

  • Zhang, R., Ritter, J.A.: New approximate model for nonlinear adsorption and diffusion in a single particle. Chem. Eng. Sci. 52(18), 3161–3172 (1997)

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support provided in part by the DOE National Energy Technology Laboratory, DOE Award Number DE-FE0007639, in part by the SAGE Center at the University of South Carolina, and in part by the Process Science and Technology Center, a consortium composed of the University of Texas at Austin, the University of South Carolina, and the Texas A&M University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Ritter.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.I., Ebner, A.D. & Ritter, J.A. New linear driving force correlation spanning long and short cycle time pressure swing adsorption processes. Adsorption 22, 939–950 (2016). https://doi.org/10.1007/s10450-016-9801-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9801-1

Keywords

Navigation