Skip to main content
Log in

Application of the surface potential data to elucidate interfacial equilibrium at ceria/aqueous electrolyte interface

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Interfacial properties of ceria (CeO2) nanoparticles and highly organized ceria crystal planes {111} and {100} in the aqueous electrolyte solution were studied. It was confirmed by high resolution electron spectroscopy that a primary ceria nanoparticle consists mostly of two crystal planes {111} and {100} with different surface sites exposed to the aqueous electrolyte solution. Interfacial properties of ceria nanoparticles are directly related to the reactivity and surface densities of existing surface sites. However, surface characterization (potentiometric titrations and electrophoretic measurements) provides only some kind of average surface properties i.e. average surface charge densities and surface potentials. The point of zero charge (pHpzc) of ceria nanoparticles was measured to be between 6.4 and 8.7, depending on the electrolyte concentration, and the isoelectric point at pHiep = 6.5. With the purpose of understanding ceria nanoparticles surface charging the inner surface potentials of ceria macro crystal planes {111} and {100} were measured for the first time, by means of single crystal electrodes, as a function of pH and ionic strength. The inner surface potential directly affects the state of ionic species bound to a certain surface plane and is thus an essential parameter governing interfacial equilibrium. From the measured Ψ 0(pH) data and applying the Multi Site Complexation Model the thermodynamic equilibrium constants of doubly-coordinated ≡Ce2-OH (at the {100} ceria crystal plane) as well as singly-coordinated ≡Ce1-OH and triply-coordinated ≡Ce3-OH (at the {111} ceria crystal plane) were evaluated. The Ψ 0(pH) function differs for two examined ceria planes, however the inner surface potentials of both planes depend on ionic strength having a broad electroneutrality region between pH = 6 and pH = 9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Antonova, A.A., Zhilina, O.V., Kagramanov, G.G., Kienskaya, K.I., Nazarov, V.V., Petropavlovskii, I.A., Fanasyutkina, I.E.: Synthesis and some properties of cerium dioxide hydrosols. Colloid J. 63, 662–667 (2001)

    Article  CAS  Google Scholar 

  • Barisik, M., Atalay, S., Beskok, A., Qian, S.: Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C 118, 1836–1842 (2014)

    Article  CAS  Google Scholar 

  • Delgado, A.V., Gonzalez-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J.: Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 194–224 (2007)

    Article  CAS  Google Scholar 

  • Diamond—Crystal and Molecular Structure Visualization, Crystal Impact—Dr. H. Putz & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn. http://www.crystalimpact.com/diamond (2015). Accessed 1 Sept 2015)

  • de Faria, L.A., Trasatti, S.: The point of zero charge of CeO2. J. Colloid Interface Sci. 167, 352–357 (1994)

    Article  Google Scholar 

  • Gulicovski, J.J., Bračko, I., Milonjić, S.K.: Morphology and the isoelectric point of nanosized aqueous ceria sols. Mater. Chem. Phys. 148, 868–873 (2014)

    Article  CAS  Google Scholar 

  • Hiemstra, T., van Riemsdijk, W.H., Bolt, G.H.: Multisite proton adsorption modeling at the solid/solution interface and (hydr)oxides: a new approach, I. Model description and evaluation of intrinstic reaction constants. J. Colloid Interface Sci. 133, 91–104 (1989)

    Article  CAS  Google Scholar 

  • Hiemstra, T., van Riemsdijk, W.H.: A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 179, 488–508 (1996)

    Article  CAS  Google Scholar 

  • Hiemstra, T., van Riemsdijk, W.H.: On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides. J. Colloid Interface Sci. 301, 1–18 (2006)

    Article  CAS  Google Scholar 

  • Hsu, W.P., Ronnquist, L., Matijevic, E.: Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium(IV). Langmuir 4, 31–37 (1988)

    Article  CAS  Google Scholar 

  • Hsu, J.-P., Nacu, A.: An experimental study on the rheological properties of aqueous ceria dispersions. J. Colloid Interface Sci. 274, 277–284 (2004)

    Article  CAS  Google Scholar 

  • Hunter, R.J.: Zeta Potentials in Colloid Science. Academic Press, London (1981)

    Google Scholar 

  • Kallay, N., Dojnović, Z., Čop, A.: Surface potential at the hematite–water interface. J. Colloid Interface Sci. 286, 610–614 (2005)

    Article  CAS  Google Scholar 

  • Kallay, N., Žalac, S., Kovačević, D.: Thermodynamics of the solid/liquid interface. Its application to adsorption and colloid stability. In: Lützenkirchen, J. (ed.) Surface Complexation Modelling. Interface Science and Technology Series. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Kallay, N., Preočanin, T., Ivšić, T.: Determination of surface potential from the electrode potential of a single-crystal electrode. J. Colloid Interface Sci. 309, 21–27 (2007)

    Article  CAS  Google Scholar 

  • Kallay, N., Preočanin, T., Kovačević, D., Lützenkirchen, J., Chibowski, E.: Electrostatic potentials at solid/liquid interfaces—review. Croat. Chem. Acta 83, 357–370 (2010)

    CAS  Google Scholar 

  • Kallay, N., Preočanin, T., Sapunar, M., Namjesnik, D.: Common surface potential of different crystal planes in electrical contact. Surf. Innov. 2, 142–150 (2014)

    Article  Google Scholar 

  • Kallay, N., Kovačević, D., Čop, A.: Interpretation of interfacial equilibria on the basis of adsorption and electrokinetic data. In: Kallay, N. (ed.) Interfacial Dynamics. Marcel Dekker Inc, New York (2000)

    Google Scholar 

  • Karakoti, A.S., Monteiro-Riviere, N.A., Aggarwal, R., Davis, J.P., Narayan, R.J., Self, W.T., McGinnis, J., Seal, S.: Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60, 33–37 (2008)

    Article  CAS  Google Scholar 

  • Langford, J., Wilson, A.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–103 (1978)

    Article  CAS  Google Scholar 

  • Lin, Y., Wu, Z., Wen, J., Poeppelmeier, K.R., Marks, L.D.: Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 14, 191–196 (2014)

    Article  CAS  Google Scholar 

  • Lützenkirchen, J. (ed.): Surface Complexation Modelling. Interface Science and Technology Series. Elsevier, Amsterdam (2006)

    Google Scholar 

  • Lützenkirchen, J., Heberling, F., Šupljika, F., Preočanin, T., Kallay, N., Johann, F., Weisser, L., Eng, P.J.: Structure-charge relationship: the case of hematite (001). Faraday Discuss. 180, 55–79 (2015)

    Article  Google Scholar 

  • Lyklema, J.: Fundamentals of Interface and Colloid Science, Vol. II: Solid-Liquid Interface. Academic Press, London (1995)

    Google Scholar 

  • Melchionna, M., Fornasiero, P.: The role of ceria-based nanostructured materials in energy applications. Mater. Today 17, 349–357 (2014)

    Article  CAS  Google Scholar 

  • Monshi, A., Foroughi, M.R., Monshi, M.R.: Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)

    Article  Google Scholar 

  • Morris, V., Fleming, P.G., Holmes, J.D., Morris, M.A.: Comparison of the preparation of cerium oxide nanocrystallites by forward (base to acid) and reverse (acid to base) precipitation. Chem. Eng. Sci. 91, 102–110 (2013)

    Article  CAS  Google Scholar 

  • Nabavi, M., Spalla, O., Cabanet, B.: Surface chemistry of nanometric ceria particles in agueous dispersions. J. Colloid Interface Sci. 160, 459–471 (1993)

    Article  CAS  Google Scholar 

  • Namai, Y., Fukui, K., Iwasawa, Y.: Atom-resolved noncontact atomic force microscopic observations of CeO2 (111) surfaces with different oxidation states: surface structure and behavior of surface oxygen atoms. J. Phys. Chem. B 107, 11666–11673 (2003)

    Article  CAS  Google Scholar 

  • Noh, J.S., Schwarz, J.A.: Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci. 130, 157–164 (1989)

    Article  CAS  Google Scholar 

  • Ocana, M.: Preparation and properties of uniform praseodymium-doped ceria colloidal particles. Colloid Polym. Sci. 280, 274–281 (2002)

    Article  CAS  Google Scholar 

  • Oh, M.-H., Lee, J.-S., Gupta, S., Chang, F.-C., Singh, R.K.: Preparation of monodispersed silica particles coated with ceria and control of coating thickness using sol-type precursor. Colloids Surf. A 355, 1–6 (2010)

    Article  CAS  Google Scholar 

  • Ould-Moussa, N., Safi, M., Guedeau-Boudeville, M.-A., Montero, D., Conjeaud, H., Berret, J.-F.: In vitro toxicity of nanoceria: effect of coating and stability in biofluids. Nanotoxicology 8, 799–811 (2014)

    CAS  Google Scholar 

  • Park, J., Regalbuto, J.R.: A simple, accurate determination of oxide PZC and the strong buffering effect of oxide surfaces at incipient wetness. J. Colloid Interface Sci. 175, 239–252 (1995)

    Article  CAS  Google Scholar 

  • Preočanin, T., Kallay, N.: Application of « mass titration » to determination of surface charge of metal oxides. Croat. Chem. Acta 71, 1117–1125 (1998)

    Google Scholar 

  • Preočanin, T., Kallay, N.: Point of zero charge and surface charge density of TiO2 in aqueous electrolyte solution as obtained by potentiometric mass titration. Croat. Chem. Acta 79, 95–106 (2006)

    Google Scholar 

  • Preočanin, T., Kallay, N.: Effect of electrolyte on the surface potential of hematite in aqueous electrolyte solutions. Surf. Eng. 24, 253–258 (2008)

    Article  Google Scholar 

  • Preočanin, T., Kallay, N.: Evaluation of surface potential from single crystal electrode potential. Adsorption 19, 259–267 (2013)

    Article  Google Scholar 

  • Ray, K.C., Sengupta, P.K., Roy, S.K.: Electrokinetic and adsorption studies on ceric oxide-aqueous interface. Indian J. Chem. Sect. 17, 348–351 (1979)

    Google Scholar 

  • Reed, K., Cormak, A., Kulkarni, A., Mayton, M., Sayle, D., Kleassig, F., Stadler, B.: Expolring the properties and applications of nanoceria: is there still pleanty of room at the bottom? Environ. Sci. NANO 1, 390–405 (2014)

    Article  CAS  Google Scholar 

  • Rudzinski, W., Charmas, R., Piasecki, W., Cases, J.M., Francois, M., Villieras, F., Michot, L.J.: Calorimetric studies of simple ion adsorption at oxide/electrolyte interface titration experiments and their theoretical analysis based on 2-pK charging mechanism and on the triple layer model. Colloid Surf. A 137, 57–68 (1998)

    Article  CAS  Google Scholar 

  • Schindler, R., Stumm, W.: The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm, W. (ed.) Aquatic Surface Chemistry, pp. 83–110. Wiley, New York (1987)

    Google Scholar 

  • Si, R., Flytzani-Stephanopoulos, M.: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed. 47, 2884–2887 (2008)

    Article  CAS  Google Scholar 

  • Song, X., et al.: Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension. Mater. Chem. Phys. 110, 128–135 (2008)

    Article  CAS  Google Scholar 

  • Suphantharida, P., Osseo-Asare, K.: Cerium oxide slurries in CMP. Electrophoretic mobility and adsorption investigations of ceria/silicate interaction. J. Electrochem. Soc. 151, G658–G662 (2004)

    Article  CAS  Google Scholar 

  • van Riemsdijk, W.H., Bolt, G.H., Koopal, L.K., Blaakmeer, J.: Electrolyte adsorption on heterogenous surfaces: adsorption models. J. Colloid Interface Sci. 109, 219–228 (1986)

    Article  Google Scholar 

  • Wyckoff, R.W.G.: Crystal Structures, 1, pp. 239–444. Interscience Publishers, New York (1963)

    Google Scholar 

  • Xu, J., Li, G., Li, L.: CeO2 nanocrystals: seed-mediated synthesis and size control. Mater. Res. Bul. 43, 990–995 (2008)

    Article  CAS  Google Scholar 

  • Yates, D.E., Levine, S., Healy, T.W.: Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. 1 70, 1807–1818 (1974)

    Article  CAS  Google Scholar 

  • Zarzycki, P., Rosso, K.M., Chatman, S., Preočanin, T., Kallay, N., Piasecki, W.: Theory, experiment and computer simulation of the electrostatic potential at crystal/electrolyte interfaces. Croat. Chem. Acta 83, 457–474 (2010)

    CAS  Google Scholar 

  • Zhang, C., Michaelidesa, A., Jenkins, S.J.: Theory of gold on ceria. Phys. Chem. Chem. Phys. 13, 22–33 (2011)

    Article  CAS  Google Scholar 

  • Žalac, S., Kallay, N.: Application of mass titration to the point of zero charge determination. J. Colloid Interface Sci. 149, 233–240 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Croatian Science Foundation under the project (IP-2014-09-6972) and by Croatian Academy of Sciences and Arts under the project “Surface properties of cerium oxide nanoparticles in aqueous electrolyte solutions”. The authors are grateful to the Laboratory for Precipitation Processes, Ruđer Bošković Institute (Zagreb, Croatia) for BET measurements, and dr. Dominik Cinčić (Department of Chemistry, Faculty of Science, University of Zagreb) for powder X-ray diffraction measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajana Preočanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namjesnik, D., Mutka, S., Iveković, D. et al. Application of the surface potential data to elucidate interfacial equilibrium at ceria/aqueous electrolyte interface. Adsorption 22, 825–837 (2016). https://doi.org/10.1007/s10450-016-9785-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9785-x

Keywords

Navigation