Skip to main content

Advertisement

Log in

Computer simulation study for methane and hydrogen adsorption on activated carbon based catalyst

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this study, a Grand Canonical Monte Carlo simulation method is used to study the adsorption of nitrogen, methane and hydrogen on activated carbon (AC) whose surfaces contain nickel catalyst. For the solid model, nickel are placed at the edge of carbon surfaces and varied from 0 to 6 %. In addition the simulation results together with the measured isotherm data for nitrogen at 77 K are used to derive the pore size distribution (PSD) of activated carbons based catalyst, which are in reasonable agreement with PSDs obtained from density functional theory method. The simulation of hydrogen adsorptions are carried out at 298 and 323 K, while those of methane are at 298, 303 and 308 K. The simulation results obtained for various pore sizes represent the commensurate and incommensurate packing which results in crossing of isotherms for pores of different sizes. An early onset in adsorption of methane on AC based catalyst is then observed and the maximum adsorption capacity in the case of catalyst is also greater than that of homogeneous carbon due to the stronger interaction between fluid and metal. The concentration of Ni on carbon surfaces is also investigated and it is found that the adsorption isotherm increases with an increase of Ni concentration which differs from the experimental data of N2. While the temperature effect is found that the adsorption increases when the temperature decrease which is typically observed for physical adsorption. The similar adsorption behavior are also observed in the case of hydrogen, justifying that nickel on AC surfaces can be used to enhance the adsorption of methane and hydrogen which may be developed for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bottani, E., Bakaev, V.: The grand canonical ensemble monte carlo simulation of nitrogen on graphite. Langmuir 10, 1550–1555 (1994)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, New Jersey (1998)

    Google Scholar 

  • Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, New York (2002)

    Google Scholar 

  • Galasheva, A.E., Polukhinb, V.A.: Computer simulation of thin nickel films on single-layer graphene. Phys. Solid State 55(11), 2368–2373 (2013)

    Article  Google Scholar 

  • Gu, C., Gao, G.H., Yu, Y.X., Mao, Z.Q.: Simulation study of hydrogen storage in single walled carbon nanotubes. Int. J. Hydrog. Energy 26, 691–696 (2001)

    Article  CAS  Google Scholar 

  • Hildebrand, F.E., Abeyaratne, R.: An atomistic investigation of the kinetics of detwinning. J. Mech. Phys. Solids 56(4), 1296–1319 (2008)

    Article  CAS  Google Scholar 

  • Horikawa, T., Sakao, N., Do, D.D.: Effects of temperature on water adsorption on controlled microporous and mesoporous carbonaceous solids. Carbon 56, 183–192 (2013)

    Article  CAS  Google Scholar 

  • Johnson, J.K., Zollweg, J.A., Gubbins, K.E.: The Lennard-Jones equation of state revisited. Mol. Phys. J. 78(3), 591–618 (1993)

    Article  CAS  Google Scholar 

  • Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638 (1984)

    Article  CAS  Google Scholar 

  • Lin, Y.Z., Sun, J., Yi, J., Lin, J.D., Chen, H.B., Liao, D.W.: Energetics of chemisorption and conversion of methane on transition metal surfaces. J. Mol. Struct. 587, 63–71 (2002)

    Article  CAS  Google Scholar 

  • Lueking, A., Yang, R.T.: Hydrogen storage in carbon nanotubes: residual metal content and pretreatment temperature. AIChE 49(6), 1556–1568 (2003)

    Article  CAS  Google Scholar 

  • Ma, Z.K., Kyotani, T., Liu, Z., Terasaki, O., Tomita, A.: Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chem. Mater. 13, 4413–4415 (2001)

    Article  CAS  Google Scholar 

  • Mohammadhosseini, A., Boulet, P., Kuchta, B.: Grand canonical monte carlo modeling of hydrogen adsorption on phosphorus-doped open carbon framework. Adsorption 19, 869–877 (2013)

    Article  CAS  Google Scholar 

  • Murthy, C.S., O-Shea, S.F., McDonald, I.R.: Mol. Phys. 50, 531 (1983)

    Article  CAS  Google Scholar 

  • Patrick, J.W.: Porosity in Carbons. Edward Arnold, London (1995)

    Google Scholar 

  • Policicchio, A., Maccallini, E., Agostino, R.G., Ciuchi, F., Aloise, A., Giordano, G.: Higher methane storage at low pressure and room temperature in new easily scalable large-scale production activated carbon for static and vehicular applications. Fuel 104, 813–821 (2013)

    Article  CAS  Google Scholar 

  • Ruthven, D.M.: Principles of Adsorption & Adsorption Process. Wiley, New York (1984)

    Google Scholar 

  • Sadus, R.J.: Molecular Simulation of Fluids, Theory, Algorithms and Object-Orientation. Elsevier Science B.V, Amsterdam (1999)

    Google Scholar 

  • Samios, S., Stubos, A.K., Kanellopoulos, N.K., Cracknell, R.F., Papadopoulos, G.K., Nicholson, D.: Determination of micropore size distribution from grand canonical monte carlo simulations and experimental CO2 isotherm data. Langmuir 13, 2795–2802 (1997)

    Article  CAS  Google Scholar 

  • Shindo, K., Kondo, T., Arakawa, M., Sakurai, Y.: Hydrogen adsorption/desorption properties of mechanically milled activated carbon. J. Alloys Compd. 359, 267–271 (2003)

    Article  CAS  Google Scholar 

  • Skalny, J., Bodor, E.E., Brunauer, S.: Investigations of a complete pore-structure analysis. J. Colloid Interface Sci. 37(2), 476–483 (1971)

    Article  CAS  Google Scholar 

  • Tanaka, H., Kanoh, H., Yudasaka, M., Lijima, S., Kaneko, K.: Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc. 127(20), 7511–7516 (2005)

    Article  CAS  Google Scholar 

  • Wang, S., Lu, G.Q.: Effects of oxide promoters on metal dispersion and metal-support interactions in Ni catalysts supported on activated carbon. Ind. Eng. Chem. Res. 36, 5103–5109 (1997)

    Article  CAS  Google Scholar 

  • Wang, S., Lu, G.Q.: Effects of acid treatments on the pore and surface properties of Ni catalyst supported on activated carbon. Carbon 36, 283–292 (1998)

    Article  CAS  Google Scholar 

  • Wongkoblap, A., Junpirom, S., Do, D.D.: Adsorption of lennard-jones fluids in carbon slit pores of a finite length. A computer simulation study. Adsorpt. Sci. Technol. 23(1), 1–18 (2005)

    Article  CAS  Google Scholar 

  • Wongkoblap, A., Tangsathitkulchai, C., Klomkliang, N., Do, D.D., Ngernyen, Y.: Characterization of single wall carbon nanotubes and activated carbon with water adsorption in finite-length pore models. Eng. J. 17(4), 93–109 (2013)

    Article  Google Scholar 

  • Wu, M., Cao, C., Jiang, J.Z.: Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 21, 505202–505208 (2010)

    Article  CAS  Google Scholar 

  • Xia, Y., Walker, G.S., Grant, D.M., Mokaya, R.: Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. J. Am. Chem. Soc. 131, 16493–16499 (2009)

    Article  CAS  Google Scholar 

  • Yang, R.T.: Adsorbents Fundamentals and Applications. Wiley, New Jersey (2003)

    Book  Google Scholar 

  • Zhou, L., Zhou, Y.: Linearization of adsorption isotherms for high pressure applications. Chem. Eng. Sci. 53(14), 2531–2536 (1998)

    Article  CAS  Google Scholar 

  • Zhou, L., Zhou, Y., Sun, Y.: Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int. J. Hydrog. Energy 29, 319–322 (2004a)

    Article  CAS  Google Scholar 

  • Zhou, L., Zhou, Y., Sun, Y.: A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes. Int. J. Hydrog. Energy 29, 475–479 (2004b)

    Article  CAS  Google Scholar 

  • Zieliński, M., Wojcieszak, R., Monteverdi, S., Mercy, M., Bettahar, M.M.: Hydrogen storage on nickel catalysts supported on amorphous activated carbon. Catal. Commun. 6, 777–783 (2005)

    Article  Google Scholar 

  • Zieliński, M., Wojcieszak, R., Monteverdi, S., Mercy, M., Bettahar, M.M.: Hydrogen storage in nickel catalysts supported on activated carbon. Int. J. Hydrog. Energy 32, 1024–1032 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Suranaree University of Technology via Institute of Research and Development, under the Grant Number 14/2556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wongkoblap.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriling, P., Wongkoblap, A. & Tangsathitkulchai, C. Computer simulation study for methane and hydrogen adsorption on activated carbon based catalyst. Adsorption 22, 707–715 (2016). https://doi.org/10.1007/s10450-016-9763-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9763-3

Keywords

Navigation