Skip to main content
Log in

Optimized Ventcel-Schwarz methods for the Cahn-Hilliard equation discretized by the stabilized linear Crank-Nicolson scheme

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The stabilized linear Crank-Nicolson (SL-CN) scheme is a very important time discretization for the Cahn-Hilliard (CH) equation since it is an unconditionally energy stable method of second order, and allows to use time steps as large as possible to reduce the total calculation. Though, it still requires a very large amount of calculations for simulating the CH equation because of the essential nature of the CH equation. To accelerate the simulation process, we propose in this paper to solve the differential system resulting from the time discretization by an optimized Schwarz method using a newly proposed Ventcel transmission condition. For a setting of two-subdomain domain decomposition with or without overlap, we derive using Fourier analysis the convergence factor, which takes on two different forms according to the size of the time steps. By solving the hard min-max problem of convergence factors using asymptotic analysis, we rigorously optimized the convergence factors for each case and obtained the optimized transmission parameters in explicit form, and the estimate for the corresponding convergence rates. The theoretical results are illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All data generated are included in the manuscript.

Code availability

Codes can be provided per request.

References

  1. Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2006)

    Article  MathSciNet  Google Scholar 

  2. Blayo, E., Cherel, D., Rousseau, A.: Towards optimized Schwarz methods for the Navier-Stokes equations. J. Sci. Comput. 66(1), 275–295 (2016)

    Article  MathSciNet  Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

  4. Cai, X.C.: Additive Schwarz algorithms for parabolic convection-diffusion equations. Numer. Math. 60(1), 41–61 (1991)

    Article  MathSciNet  Google Scholar 

  5. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52(3), 546–562 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Gander, M.J., Xu, Y.: Optimized Schwarz methods with elliptical domain decompositions. J. Sci. Comput. 86(2), 1–28 (2021)

    Article  MathSciNet  Google Scholar 

  7. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013)

    Article  MathSciNet  Google Scholar 

  8. Christlieb, A., Promislow, K., Xu, Z.: On the unconditionally gradient stable scheme for the Cahn-Hilliard equation and its implementation with Fourier method. Commun. Math. Sci. 11(2), 345–360 (2013)

    Article  MathSciNet  Google Scholar 

  9. Discacciati, M., Gerardo-Giorda, L.: Optimized Schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38(4), 1959–1983 (2018)

    Article  MathSciNet  Google Scholar 

  10. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dubois, O., Gander, M.J., Loisel, S., St-Cyr, A., Szyld, D.B.: The optimized Schwarz method with a coarse grid correction. SIAM J. Sci. Comput. 34(1), A421–A458 (2012)

    Article  MathSciNet  Google Scholar 

  12. Elliott, C.M.: The Cahn-Hilliard model for the kinetics of phase separation. In: J.F. Rodrigues (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer, Basel (1989)

    Chapter  Google Scholar 

  13. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: Moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)

    Article  MathSciNet  Google Scholar 

  14. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished results (June 9, 1998)

  15. Gander, M.J.: Optimized Schwarz methods for Helmholtz problems. In: Proceedings of the 13th International Conference on Domain Decomposition, pp. 245–252 (2001)

  16. Gander, M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699–731 (2006)

    Article  MathSciNet  Google Scholar 

  17. Gander, M.J., Magoulés, F., Nataf, F.: Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24(1), 38–60 (2002)

  18. Gander, M.J., Xu, Y.: Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52(4), 1981–2004 (2014)

  19. Gander, M.J., Xu, Y.: Optimized Schwarz methods for model problems with continuously variable coefficients. SIAM J. Sci. Comput. 38(5), A2964–A2986 (2016)

  20. Gander, M.J., Xu, Y.: Optimized Schwarz methods for domain deompositions with parabolic interfaces. In: C.O. Lee, X.C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.J. Park, O.B. Widlund (eds.) Domain Decomposition Methods in Science and Engineering XXIII, pp. 323–331. Springer, Cham (2017)

  21. Gander, M.J., Xu, Y.: Optimized Schwarz methods with nonoverlapping circular domain decomposition. Math. Comput. 86(304), 637–660 (2017)

  22. Gander, M.J., Zhang, H.: A class of iterative solvers for the Helmholtz equation: Factorizations, sweeping preconditioners, source transfer, single layer potentials, polarized traces, and optimized Schwarz methods. SIAM Rev. 61(1), 3–76 (2019)

    Article  MathSciNet  Google Scholar 

  23. Gerardo-Giorda, L., Nobile, F., Vergara, C.: Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal. 48(6), 2091–2116 (2010)

    Article  MathSciNet  Google Scholar 

  24. Japhet, C.: Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d’Orde 2. Ph.D. thesis, L’Université Paris 13 (1998)

  25. Japhet, C., Nataf, F., Rogier, F.: The optimized order 2 method: Application to convection-diffusion problems. Future Gener. Comput. Syst. 18(1), 17–30 (2001)

    Article  Google Scholar 

  26. Lee, S., Lee, C., Lee, H.G., Kim, J.: Comparison of different numerical schemes for the Cahn-Hilliard equation. J. Korean Soc. Ind. App. Math. 17(3), 197–207 (2013)

    Article  MathSciNet  Google Scholar 

  27. Li, W., Xu, Y.: Schwarz domain decomposition methods for the fluid-fluid system with friction-type interface conditions. App. Numer. Math. 166, 114–126 (2021)

    Article  MathSciNet  Google Scholar 

  28. Li, Y., Choi, Y., Kim, J.: Computationally efficient adaptive time step method for the Cahn-Hilliard equation. Comput. Math. App. 73(8), 1855–1864 (2017)

    Article  MathSciNet  Google Scholar 

  29. Lions, P.L.: On the Schwarz alternating method. III: A variant for nonoverlapping subdomains. In: Third International Symposium of Domain Decomposition Methods for Partial Differential Equations, vol. 6, pp. 202–223. SIAM, Philadelphia, PA (1990)

  30. Novick-Cohen, A., Segel, L.A.: Nonlinear aspects of the Cahn-Hilliard equation. Phys. D: Nonlinear Phenom. 10(3), 277–298 (1984)

    Article  MathSciNet  Google Scholar 

  31. Schwarz, H.A.: Über einen Grenzübergang durch alternierende Verfahren. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 15, 272–286 (1870)

    Google Scholar 

  32. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J Numer Anal 50(1), 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  33. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  34. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49(3), 945–969 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wang, L., Yu, H.: Convergence analysis of an unconditionally energy stable linear Crank-Nicolson scheme for the Cahn-Hilliard equation. J. Math. Study 51(1), 89–114 (2018)

    Article  MathSciNet  Google Scholar 

  36. Wise, S.M., Wang, C., Lowengrub, J.S.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47(3), 2269–2288 (2009)

    Article  MathSciNet  Google Scholar 

  37. Xu, Y.: Optimized Schwarz methods with Ventcel transmission conditions for model problems with continuously variable coefficients. J. Comput. App. Math. 334, 97–110 (2018)

    Article  MathSciNet  Google Scholar 

  38. Xu, Y., Sun, Y., Wang, S., Gao, S.: Optimized Schwarz methods for the Cahn-Hilliard equation. SIAM J. Sci. Comput. In press (2022)

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their valuable comments that improved the presentation greatly.

Funding

This work was funded by the National Key R&D Program of China (No. 2021YFA1003400), NSFC-12071069, the Science and Technology Development Planning of Jilin Province (No. YDZJ202201ZYTS573), the Fundamental Research Funds for the Central Universities (No. JGPY202101), and the Space Optoelectronic Measurement & Perception Laboratory of BICE (No. LabSOMP-2021-04).

Author information

Authors and Affiliations

Authors

Contributions

Yafei Sun and Yingxiang Xu wrote the article; Yingxiang Xu, Shuangbin Wang and Shan Gao developed the theory; and Yafei Sun performed the numerical experiments.

Corresponding author

Correspondence to Yingxiang Xu.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Francesca Rapetti.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Xu, Y., Wang, S. et al. Optimized Ventcel-Schwarz methods for the Cahn-Hilliard equation discretized by the stabilized linear Crank-Nicolson scheme. Adv Comput Math 48, 67 (2022). https://doi.org/10.1007/s10444-022-09982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09982-y

Keywords

Mathematics Subject Classification

Navigation