Skip to main content
Log in

A fast solver for elastic scattering from axisymmetric objects by boundary integral equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Fast and high-order accurate algorithms for three-dimensional elastic scattering are of great importance when modeling physical phenomena in mechanics, seismic imaging, and many other fields of applied science. In this paper, we develop a novel boundary integral formulation for the three-dimensional elastic scattering based on the Helmholtz decomposition of elastic fields, which converts the Navier equation to a coupled system consisted of Helmholtz and Maxwell equations. An FFT-accelerated separation of variables solver is proposed to efficiently invert boundary integral formulations of the coupled system for elastic scattering from axisymmetric rigid bodies. In particular, by combining the regularization properties of the singular boundary integral operators and the FFT-based fast evaluation of modal Green’s functions, our numerical solver can rapidly solve the resulting integral equations with a high-order accuracy. Several numerical examples are provided to demonstrate the efficiency and accuracy of the proposed algorithm, including geometries with corners at different wavenumbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahner, J.F., Hsiao, G.C.: On the two-dimensional exterior boundary-value problems of elasticity. SIAM J. Appl. Math. 31, 677–685 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albella Martínez, J., Imperiale, S., Joly, P., Rodríguez, J.: Solving 2D linear isotropic elastodynamics by means of scalar potentials: a new challenge for finite elements. J. Sci. Comput. 77, 1832–1873 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpert, B.: Hybrid Gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammari, H., Bretin, E., Garnier, J., Kang, H., Lee, H., Wahab, A.: Mathematical Methods in Elasticity Imaging. Princeton University Press, New Jersey (2015)

  5. Bao, G., Xu, L., Yin, T.: An accurate boundary element method for the exterior elastic scattering problem in two dimensions. J. Comput. Phys. 348, 343–363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borges, C., Lai, J.: Inverse scattering reconstruction of a three dimensional sound-soft axis-symmetric impenetrable object. Inverse Prob. 36(10), 105005 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bremer, J.: On the Nyström discretization of integral equations on planar curves with corners. Appl. Comput. Harm. Anal. 32, 45–64 (2012)

    Article  MATH  Google Scholar 

  8. Bremer, J., Gimbutas, Z.: A Nyström method for weakly singular integral operators on surfaces. J. Comput. Phys. 231(14), 4885–4903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruno, O.P., Yin, T.: Regularized integral equation methods for elastic scatteringproblems in three dimensions. J. Comput. Phys. 410, 109350 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bu, F., Lin, J., Reitich, F.: A fast and high-order method for the three-dimensional elastic wave scattering problem. J. Comput. Phys. 258, 856–870 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohl, H.S., Tohline, J.E.: A compact cylindrical Green’s function expansion for the solution of potential problems. Astrophys. J. 527(1), 86–101 (1999)

    Article  Google Scholar 

  13. Conway, J.T., Cohl, H.S.: Exact Fourier expansion in cylindrical coordinates for the three-dimensional Helmholtz Green function. Z. Angew. Math. Phys. 61, 425–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  15. Dong, H., Lai, J., Li, P.: Inverse obstacle scattering for elastic waves with phased or phaseless far-field data. SIAM J. Imaging Sci. 12, 809–838 (2019)

    Article  MathSciNet  Google Scholar 

  16. Dong, H., Lai, J., Li, P.: An inverse acoustic-elastic interaction problem with phased or phaseless far-field data. Inverse Probl. 36, 035014 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, H., Lai, J., Li, P.: A highly accurate boundary integral method for the elastic obstacle scattering problem. Math. Comput. 90, 2785–2814 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Epstein, C.L., Greengard, L., O’Neil, M.: A high-order wideband direct solver for electromagnetic scattering from bodies of revolution. J. Comput. Phys. 387, 205–229 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Felipe, V., Leslie, G., Zydrunas, G.: Boundary integral equation analysis on the sphere. Numer. Math. 128, 463–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, N., Carin, L.: Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium. IEEE Trans. Antennas Propag. 47(4), 610–619 (1999)

    Article  Google Scholar 

  21. Gillman, A., Young, P.M., Martinsson, P.G.: A direct solver with O(N) complexity for integral equations on one-dimensional domains. Front. Math. China 7(2), 217–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gimbutas, Z., Greengard, L.: Fast multi-particle scattering: a hybrid solver for the Maxwell equations in microstructured materials. J. Comput. Phys. 232, 22–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greengard, L., O’Neil, M., Rachh, M., Vico, F.: Fast multipole methods for evaluation of layer potentials with locally-corrected quadratures. Submitted. arXiv:2006.02545

  25. Gustafsson, M.: Accurate and efficient evaluation of modal green’s functions. J. Electromagnet. Wave. 24(10), 1291–1301 (2010)

    Article  Google Scholar 

  26. Hao, S., Barnett, A.H., Martinsson, P.G., Young, P.: High-order accurate Nyström discretization of integral equations with weakly singular kernels on smooth curves in the plane. Adv. Comput. Math. 40, 245–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hao, S., Martinsson, P.G., Young, P.: An efficient and highly accurate solver for multi-body acoustic scattering problems involving rotationally symmetric scatterers. Comput. Math. Appl. 69, 304–318 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Helsing, J., Holst, A.: Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems. Adv. Comput. Math. 41, 691–708 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Helsing, J., Karlsson, A.: An explicit kernel-split panel-based Nyström scheme for integral equations on axially symmetric surfaces. J. Comput. Phys. 272, 686–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Helsing, J., Karlsson, A.: Determination of normalized electric eigenfields in microwave cavities with sharp edges. J. Comput. Phys. 304(Supplement C), 465–486 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Helsing, J., Karlsson, A.: Resonances in axially symmetric dielectric objects. IEEE Trans. Microw. Theory Tech. 65(7), 2214–2227 (2017)

    Article  Google Scholar 

  32. Helsing, J., Ojala, R.: Corner singularities for elliptic problems: integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227, 8820–8840 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), 2507–2532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hu, G., Kirsch, A., Sini, M.: Some inverse problems arising from elastic scattering by rigid obstacles. Inverse Probl. 29, 015009 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kolm, P., Jiang, S., Rokhlin, V.: Quadruple and octuple layer potentials in two dimensions I: analytical apparatus. Appl. Comput. Harmon. Anal. 14, 47–74 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kress, R.: Linear Integral Equations. Springer, New York (1999)

    Book  MATH  Google Scholar 

  37. Lai, J., Li, P.: A framework for simulation of multiple elastic scattering in two dimensions. SIAM J. Sci. Comput. 41, A3276–A3299 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lai, J., O’Neil, M.: An FFT-accelerated direct solver for electromagnetic scattering from penetrable axisymmetric objects. J. Comput. Phys. 390, 152–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lai, J., Ambikasaran, S., Greengard, L.F.: A fast direct solver for high frequency scattering from a large cavity in two dimensions. SIAM J. Sci. Comput. 36(6), B887–B903 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lai, J., Greengard, L., O’Neil, M.: Robust integral formulations for electromagnetic scattering from three-dimensional cavities. J. Comput. Phys. 345, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu, Y., Barnett, A. H.: Efficient numerical solution of acoustic scattering from doubly-periodic arrays of axisymmetric objects. J. Comput. Phys. 324, 226–245 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Louër, F.L.: On the fréchet derivative in elastic obstacle scattering. SIAM J. Appl. Math. 72, 1493–1507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Louër, F.L.: A high order spectral algorithm for elastic obstacle scattering in three dimensions. J. Comput. Phys. 279, 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. O’Neil, M., Cerfon, A.J.: An integral equation-based numerical solver for Taylor states in toroidal geometries. J. Comput. Phys. 359, 263–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pao, Y.H., Varatharajulu, V.: Huygens’ principle, radiation conditions, and integral formulas for the scattering of elastic waves. J. Acoust. Soc. Am. 59, 1361–1371 (1976)

    Article  MATH  Google Scholar 

  46. Tong, M.S., Chew, W.C.: Nyström method for elastic wave scattering by three-dimensional obstacles. J. Comput. Phys. 226, 1845–1858 (2007)

    Article  MATH  Google Scholar 

  47. Young, P., Hao, S., Martinsson, P.G.: A high-order Nyström discretization scheme for boundary integral equations defined on rotationally symmetric surfaces. J. Comput. Phys. 231(11), 4142–4159 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yu, W.M., Fang, D.G., Cui, T.J.: Closed form modal green’s functions for accelerated computation of bodies of revolution. IEEE Trans. Antennas Propag. 56(11), 3452–3461 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of JL was partially supported by the Funds for Creative Research Groups of NSFC (No. 11621101), NSFC Grant No. U21A20425 and NSFC Grant No. 11871427. The work of HD was partially supported by NSFC Grant No. 12171201 and the National Key Research and Development Program of China (Grant No. 2020YFA0713602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: Gunnar J Martinsson

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Advances in Computational Integral Equations

Guest Editors: Stephanie Chaillat, Adrianna Gillman, Per-Gunnar Martinsson, Michael O’Neil, Mary-Catherine Kropinski, Timo Betcke, Alex Barnett

Appendix.: Fourier expansion for the surface gradient and divergence

Appendix.: Fourier expansion for the surface gradient and divergence

Let Γ be the boundary of a three-dimensional axisymmetric object with parametrization given by

$$\left( r(s)\cos\theta,r(s)\sin\theta,z(s)\right), $$

and (τ1,τ2) be the unit orthogonal tangential vectors on Γ. Here we do not require the parameter s to be the arclength of the generating curve of Γ.

Lemma 1

The surface gradient of a function σC1,α(Γ) with Fourier expansion (??) is given by

$$ \begin{array}{@{}rcl@{}} \text{Grad} \sigma ={\sum}_{m} \left( \frac{1}{\sqrt{r^{\prime 2}+z^{\prime 2}}}\frac{\partial\sigma_{m}}{\partial s} \boldsymbol{\tau}_1 + \frac{\mathrm{i} m }{r} \sigma_{m} \boldsymbol{\tau}_2 \right)e^{\mathrm{i} m\theta }. \end{array} $$
(A.1)

The surface divergence of a tangential vector \(\boldsymbol {J}=J^{1}\boldsymbol {\tau }_1+J^{2}\boldsymbol {\tau }_2\in T_{d}^{0,\alpha }({\varGamma })\) with Fourier expansion (??) is given by

$$ \begin{array}{@{}rcl@{}} \text{Div} \boldsymbol{J}={\sum}_{m} \left( \frac{1}{r\sqrt{r^{\prime 2}+z^{\prime 2}}}\left( r^{\prime}(s){J_{m}^{1}}+r ({J_{m}^{1}})^{\prime}\right) + \frac{\mathrm{i} m }{r} {J_{m}^{2}}\right)e^{\mathrm{i} m\theta }. \end{array} $$
(A.2)

We first show the expression of Grady(n(x) ⋅n(y)) and Divy(n(y) ×τi(x) ×n(y)), i = 1, 2 in the parametrization form. Since

$$ \begin{array}{@{}rcl@{}} \boldsymbol{n}(\boldsymbol{x})&=& C_{t}\left( z^{\prime}(t)(\cos \theta_{t}, \sin\theta_{t},0)-r^{\prime}(t)(0,0,1)\right),\\ \boldsymbol{n}(\boldsymbol{y})&=& C_{s}\left( z^{\prime}(s)(\cos \theta, \sin\theta,0)-r^{\prime}(s)(0,0,1)\right), \end{array} $$

where \(C_{s} = 1/\sqrt {r^{\prime }(s)^{2}+z^{\prime }(s)^{2}}\), \( C_{t} = 1/\sqrt {r^{\prime }(t)^{2}+z^{\prime }(t)^{2}}\), it holds

$$ \begin{array}{@{}rcl@{}} &&\text{Grad}_{\boldsymbol{y}}(\boldsymbol{n}(\boldsymbol{x})\cdot \boldsymbol{n}(\boldsymbol{y})) \\ &=& C_{s} \left( C_{t}C^{\prime}_{s}(z^{\prime}(t)z^{\prime}(s)\cos(\theta_{t}-\theta)+r^{\prime}(t)r^{\prime}(s)) \right.\\&&\left.+C_{t}C_{s}(z^{\prime}(t)z^{\prime\prime}(s)\cos(\theta_{t}-\theta)+r^{\prime}(t)r^{\prime\prime}(s))\right)\boldsymbol{\tau}_1 \\ &+&1/r(s)C_{t}C_{s} z^{\prime}(t)z^{\prime}(s)\sin(\theta_{t}-\theta)\boldsymbol{\tau}_2. \end{array} $$

Similarly, since

$$ \begin{array}{@{}rcl@{}} \boldsymbol{\tau}_1(\boldsymbol{x})\!&=&\! C_{t}\left( r^{\prime}(t)(\cos \theta_{t}, \sin\theta_{t},0)+z^{\prime}(t)(0,0,1)\right), \quad \boldsymbol{\tau}_2(\boldsymbol{x})= (-\sin \theta_{t}, \cos\theta_{t},0), \\ \boldsymbol{\tau}_1(\boldsymbol{y})\!&=&\! C_{s}\left( r^{\prime}(s)(\cos \theta, \sin\theta,0)+z^{\prime}(s)(0,0,1)\right), \quad \boldsymbol{\tau}_2(\boldsymbol{y})= (-\sin \theta, \cos\theta,0), \end{array} $$

by Lemma 7, it holds

$$ \begin{array}{@{}rcl@{}} &&\text{Div}_{\boldsymbol{y}} (\boldsymbol{n}(\boldsymbol{y})\times \boldsymbol{\tau}_1(\boldsymbol{x}) \times \boldsymbol{n}(\boldsymbol{y})) \\ &=&C_{s}/r(s) \left[ r^{\prime}(s)C_{t}C_{s}\left( r^{\prime}(t)r^{\prime}(s)\cos(\theta_{t}-\theta)+z^{\prime}(t)z^{\prime}(s)\right)\right. \\ &+&r(s)C_{t}C^{\prime}_{s}\left( r^{\prime}(t)r^{\prime}(s)\cos(\theta_{t}-\theta)+z^{\prime}(t)z^{\prime}(s)\right) \\ &+&\left. r(s)C_{t}C_{s}\left( r^{\prime}(t)r^{\prime\prime}(s)\cos(\theta_{t}-\theta)+z^{\prime}(t)z^{\prime\prime}(s)\right)\right] \\ &-&1/r(s)C_{t}r^{\prime}(t)\cos(\theta_{t}-\theta), \end{array} $$

and

$$ \begin{array}{@{}rcl@{}} &&\text{Div}_{\boldsymbol{y}} (\boldsymbol{n}(\boldsymbol{y})\times \boldsymbol{\tau}_2(x) \times \boldsymbol{n}(\boldsymbol{y})) \\ &=&C_{s}/ r(s) \left[-r^{\prime}(s)C_{s} r^{\prime}(s)\sin(\theta_{t}-\theta)-r(s)(C^{\prime}_{s}r^{\prime}(s)+C_{s}r^{\prime\prime}(s))\sin(\theta_{t}-\theta) \right]\\&+&1/r(s)\sin(\theta_{t}-\theta). \end{array} $$

To numerically construct the surface gradient operator for an unknown function σ, we make use of the fact that σ is discretized on p scaled Gauss-Legendre nodes on each panel as discussed in Section ??. Following the notation in Section ??, σ on the i th panel γi is approximated by

$$\sigma(\boldsymbol{y}) \approx \sum\limits_{j=1}^{p}c_{ij}{P^{i}_{j}}(\boldsymbol{y})= \sum\limits_{j=1}^{p}\sum\limits_{n=1}^{p} U^{i}_{jn} \sigma(\boldsymbol{y}_{in}) {P^{i}_{j}}(\boldsymbol{y}). $$

Therefore the surface divergence can be approximated as

$$\text{Grad}_{\boldsymbol{y}}\sigma(\boldsymbol{y}) \approx \sum\limits_{j=1}^{p} \sum\limits_{n=1}^{p} U^{i}_{jn} \sigma(\boldsymbol{y}_{in}) \text{Grad}_{\boldsymbol{y}} {P^{i}_{j}}(\boldsymbol{y})=\sum\limits_{n=1}^{p} \sum\limits_{j=1}^{p} U^{i}_{jn}\text{Grad}_{\boldsymbol{y}} {P^{i}_{j}}(\boldsymbol{y}) \sigma(\boldsymbol{y}_{in}) .$$

By taking y to be the p scaled Gauss-Legendre nodes on the i th panel, we obtain the discretized surface gradient operator for σ. The discretization of surface divergence operator for a tangential vector function J can be constructed similarly.

Combining the results above with Lemmas 3 and 4, we are able to obtain the azimuthal Fourier decomposition of boundary operators \({\mathscr{H}}\) and \(\mathcal {N}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Dong, H. A fast solver for elastic scattering from axisymmetric objects by boundary integral equations. Adv Comput Math 48, 20 (2022). https://doi.org/10.1007/s10444-022-09935-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-022-09935-5

Keywords

Mathematics Subject Classification (2010)

Navigation