Skip to main content
Log in

A boundary integral equation approach to computing eigenvalues of the Stokes operator

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The eigenvalues and eigenfunctions of the Stokes operator have been the subject of intense analytical investigation and have applications in the study and simulation of the Navier–Stokes equations. As the Stokes operator is second order and has the divergence-free constraint, computing these eigenvalues and the corresponding eigenfunctions is a challenging task, particularly in complex geometries and at high frequencies. The boundary integral equation (BIE) framework provides robust and scalable eigenvalue computations due to (a) the reduction in the dimension of the problem to be discretized and (b) the absence of high-frequency “pollution” when using Green’s function to represent propagating waves. In this paper, we detail the theoretical justification for a BIE approach to the Stokes eigenvalue problem on simply- and multiply-connected planar domains, which entails a treatment of the uniqueness theory for oscillatory Stokes equations on exterior domains. Then, using well-established techniques for discretizing BIEs, we present numerical results which confirm the analytical claims of the paper and demonstrate the efficiency of the overall approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhmetgaliyev, E., Bruno, O. P., Nigam, N.: A boundary integral algorithm for the laplace dirichlet–neumann mixed eigenvalue problem. J. Comput. Phys. 298, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpert, B. K.: Hybrid gauss-trapezoidal quadrature rules. SIAM J. Sci. Comput. 20(5), 1551–1584 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antunes, P.R.: On the buckling eigenvalue problem. J. Phys. A: Math. Theor. 44(21), 215205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashbaugh, M. S., Laugesen, R. S.: Fundamental tones and buckling loads of clamped plates. Ann. della Scuola Normal. Super. Pisa-Classe Sci. 23(2), 383–402 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Babuska, I. M., Sauter, S. A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34 (6), 2392–2423 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bäcker, A.: Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems. In: The Mathematical Aspects of Quantum Maps, pp. 91–144. Springer (2003)

  7. Barnett, A.: Asymptotic rate of quantum ergodicity in chaotic euclidean billiards. Commun. Pure Appl. Math. A J. Issued Courant Inst. Math. Sci. 59(10), 1457–1488 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barnett, A., Betcke, T.: MPSpack: A MATLAB toolbox to solve Helmholtz PDE, wave scattering, and eigenvalue problems, pp. 2008–2012

  9. Batcho, P. F., Karniadakis, G. E.: Generalized Stokes eigenfunctions: a new trial basis for the solution of incompressible Navier-Stokes equations. J. Comput. Phys. 115(1), 121–146 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Biros, G., Ying, L., Zorin, D.: The embedded boundary integral method for the unsteady incompressible Navier–Stokes equations. Tech. Rep. TR2003-838, Courant Institute, New York University. https://cs.nyu.edu/media/publications/TR2003-838.pdf (2002)

  11. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63(2), 97–107 (1999). https://doi.org/10.1007/s006070050053

    Article  MathSciNet  MATH  Google Scholar 

  12. Bornemann, F.: On the numerical evaluation of fredholm determinants. Math. Comput. 79(270), 871–915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bramble, J., Payne, L.: Pointwise bounds in the first biharmonic boundary value problem. J. Math. Phys. 42(1-4), 278–286 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bremer, J., Gimbutas, Z.: A nyström method for weakly singular integral operators on surfaces. J. Comput. Phys. 231(14), 4885–4903 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bremer, J., Gimbutas, Z., Rokhlin, V.: A nonlinear optimization procedure for generalized Gaussian quadratures. SIAM J. Sci. Comput. 32(4), 1761–1788 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruno, O. P., Kunyansky, L. A.: A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J. Comput. Phys. 169(1), 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 126(1), 33–51 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, W., Lin, Q.: Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method. Appl. Math. 51(1), 73–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, H., Gimbutas, Z., Martinsson, P. G., Rokhlin, V.: On the compression of low rank matrices. SIAM J. Sci. Comput. 26(4), 1389–1404 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Colton, D. L., Kress, R.: Integral equation methods in scattering theory. Pure and Applied Mathematics. Wiley, New York (1983)

    MATH  Google Scholar 

  21. Driscoll, T. A., Hale, N., Trefethen, L.N.: Chebfun guide (2014)

  22. Epstein, C. L., O’Neil, M.: Smoothed corners and scattered waves. SIAM J. Sci. Comput. 38(5), A2665–A2698 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Filoche, M., Mayboroda, S.: Strong localization induced by one clamped point in thin plate vibrations. Phys. Rev. Lett. 103(25), 254301 (2009)

    Article  Google Scholar 

  24. Halko, N., Martinsson, P. G., Tropp, J. A.: Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helsing, J., Jiang, S.: On integral equation methods for the first Dirichlet problem of the biharmonic and modified biharmonic equations in nonsmooth domains. SIAM J. Sci. Comput. 40(4), A2609–A2630 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Helsing, J., Ojala, R.: Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J. Comput. Phys. 227(20), 8820–8840 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Helsing, J., Ojala, R.: On the evaluation of layer potentials close to their sources. J. Comput. Phys. 227(5), 2899–2921 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ho, K.L.: FLAM: Fast linear algebra in MATLAB. https://doi.org/10.5281/zenodo.1253582 (2018)

  29. Ho, K. L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, P., He, Y., Feng, X.: Numerical investigations on several stabilized finite element methods for the Stokes eigenvalue problem. Mathematical Problems in Engineering 2011 (2011)

  31. Jia, S., Xie, H., Yin, X., Gao, S.: Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods. Appl. Math. 54(1), 1–15 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, S., Kropinski, M. C., Quaife, B. D.: Second kind integral equation formulation for the modified biharmonic equation and its applications. J. Comput. Phys. 249, 113–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Johnson, C. P., Will, K. M.: Beam buckling by finite element procedure. J. Struc. Div. 100(Proc Paper 10432), 669–685 (1974)

    Google Scholar 

  34. Kelliher, J.: Eigenvalues of the Stokes operator versus the Dirichlet laplacian in the plane. Pac. J. Math. 244(1), 99–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and selected applications (1991)

  36. Kimeswenger, A., Steinbach, O., Unger, G.: Coupled finite and boundary element methods for fluid-solid interaction eigenvalue problems. SIAM J. Numer. Anal. 52(5), 2400–2414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kirsch, A.: An integral equation approach and the interior transmission problem for maxwell’s equations. Inver. Probl. Imaging 1(1), 159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kitahara, M.: Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates, vol. 10 Elsevier (2014)

  39. Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kress, R.: Boundary integral equations in time-harmonic acoustic scattering. Math. Comput. Model. 15(3-5), 229–243 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kress, R., Maz’ya, V., Kozlov, V.: Linear integral equations, vol. 17. Springer (1989)

  42. Ladyzhenskaya, O. A.: The mathematical theory of viscous incompressible flow, vol. 76. Gordon and Breach, New York (1969)

  43. Leriche, E., Labrosse, G.: Stokes eigenmodes in square domain and the stream function–vorticity correlation. J. Comput. Phys. 200(2), 489–511 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lindsay, A. E., Quaife, B., Wendelberger, L.: A boundary integral equation method for mode elimination and vibration confinement in thin plates with clamped points. Adv. Comput. Math. 44(4), 1249–1273 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lovadina, C., Lyly, M., Stenberg, R.: A posteriori estimates for the Stokes eigenvalue problem. Numer. Methods Partial Differ. Equ. 25(1), 244–257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lu, Y. Y., Yau, S. T.: Eigenvalues of the laplacian through boundary integral equations. SIAM J. Matrix Anal. Appl. 12(3), 597–609 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Mayergoyz, I.D., Fredkin, D.R., Zhang, Z.: Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B 72(15), 155412 (2005)

    Article  Google Scholar 

  48. Mercier, B., Osborn, J., Rappaz, J., Raviart, P. A.: Eigenvalue approximation by mixed and hybrid methods. Math. Comput. 36(154), 427–453 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Noferini, V., Pérez, J.: Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable? Math. Comput. 86(306), 1741–1767 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Osborn, J. E.: Approximation of the eigenvalues of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier–Stokes equations. SIAM J. Numer. Anal. 13(2), 185–197 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  51. Overvelde, J. T., Shan, S., Bertoldi, K.: Compaction through buckling in 2d periodic, soft and porous structures: effect of pore shape. Adv. Mater. 24(17), 2337–2342 (2012)

    Article  Google Scholar 

  52. Pólya, G., Pólya, G., Szegő, G.: Isoperimetric inequalities in mathematical physics. Princeton University Press (1951)

  53. Pozrikidis, C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511624124. http://ebooks.cambridge.org/ref/id/CBO9780511624124 (1992)

  54. Rachh, M., Askham, T.: Integral equation formulation of the biharmonic Dirichlet problem. J. Sci. Comp. 75(2), 762–781 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Rachh, M., Serkh, K.: On the solution of S,tokes equation on regions with corners. arXiv:1711.04072 (2017)

  56. Rannacher, R.: Nonconforming finite element methods for eigenvalue problems in linear plate theory. Numer. Math. 33(1), 23–42 (1979). https://doi.org/10.1007/BF01396493

    Article  MathSciNet  MATH  Google Scholar 

  57. Reed, M., Simon, B.: Methods of mathematical physics i: Functional analysis (1972)

  58. Schneider, K., Farge, M.: Final states of decaying 2d turbulence in bounded domains: Influence of the geometry. Physica D: Nonlinear Phenom. 237(14-17), 2228–2233 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. Serkh, K., Rokhlin, V.: On the solution of elliptic partial differential equations on regions with corners. J. Comput. Phys. 305, 150–171 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Simon, B.: Trace ideals and their applications, vol. 120 American Mathematical Soc (2005)

  61. Steinbach, O., Unger, G.: Convergence analysis of a galerkin boundary element method for the dirichlet laplacian eigenvalue problem. SIAM J. Numer. Anal. 50(2), 710–728 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Szegö, G.: On membranes and plates. Proc. Natl. Acad. Sci. U.S.A. 36(3), 210 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  63. Taylor, G.: The buckling load for a rectangular plate with four clamped edges. ZAMM-J. Appl. Math. Mech./Z. Angewandte Math. Mech. 13(2), 147–152 (1933)

    Article  MATH  Google Scholar 

  64. Trefethen, L.N.: Approximation theory and approximation practice, vol. 128. SIAM (2013)

  65. Trefethen, L.N., Betcke, T.: Computed eigenmodes of planar regions. Contemp. Math. 412, 297–314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Türeci, H.E., Schwefel, H.G.: An efficient fredholm method for the calculation of highly excited states of billiards. J. Phys. A Math. Theor. 40(46), 13869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. Veble, G., Prosen, T., Robnik, M.: Expanded boundary integral method and chaotic time-reversal doublets in quantum billiards. New J. Phys. 9(1), 15 (2007)

    Article  MathSciNet  Google Scholar 

  68. Zhao, L., Barnett, A.: Robust and efficient solution of the drum problem via nystrom approximation of the fredholm determinant. SIAM J. Numer. Anal. 53(4), 1984–2007 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alex Barnett, Leslie Greengard, and Shidong Jiang for many useful discussions.

Funding

T. Askham was supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0329.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Askham.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Dirichlet eigenvalues and eigenfunctions on the annulus

In this section, we compute some of the Dirichlet eigenvalues corresponding to a subset of the radially symmetric eigenfunctions on the annulus. In polar coordinates (r,𝜃), consider the annulus defined by R1 < r < R2. Suppose that u is of the form:

$$ {\boldsymbol u} = \nabla^{\perp}\left( \alpha H_{0}(kr) + \upbeta J_{0}(kr) \right) , $$
(60)
and p = 0.

Clearly, this pair satisfies the oscillatory Stokes equation with parameter k, since J0(kr) and H0(kr) satisfy the Helmholtz equation on the annulus.

Let \(\hat {r},\hat {\theta }\) denote the unit vectors in polar coordinates. A simple calculation shows that:

$$ \begin{array}{@{}rcl@{}} u_{r} &=& {\boldsymbol u} \cdot \hat{r} = 0 \\ u_{\theta} &=& {\boldsymbol u} \cdot \hat{\theta} = k(\alpha H_{0}^{\prime}(kr) + \upbeta J_{0}^{\prime}(kr)) . \end{array} $$
(61)

This in particular implies that on r = R1, u𝜃 takes on the constant value \(k(\alpha H_{0}^{\prime }(kR_{1}) + \upbeta J_{0}^{\prime }(kR_{1}))\). Similarly, on r = R2, u𝜃 takes on the constant value \(k(\alpha H_{0}^{\prime }(kR_{2}) + \upbeta J_{0}^{\prime }(kR_{2}))\).

Thus, if k satisfies:

$$ H_{0}^{\prime}(kR_{1}) J_{0}^{\prime}(kR_{2}) - H_{0}^{\prime}(kR_{2})J_{0}^{\prime}(kR_{1}) = 0 , $$
(62)
and for those values of k if α,β are non-zero solutions to the system of equations:
$$ \left[\begin{array}{ll} H_{0}^{\prime}(kR_{1}) & J_{0}^{\prime}(kR_{1}) \\ H_{0}^{\prime}(kR_{2}) & J_{0}^{\prime}(kR_{2}) \end{array}\right] \left[\begin{array}{ll} \alpha \\ \upbeta \end{array}\right] = \left[\begin{array}{ll} 0 \\ 0 \end{array}\right] , $$
(63)
then k is a Dirichlet eigenvalue and u defined by (60) is the corresponding eigenfunction.

Appendix B: Neumann eigenvalues and eigenfunctions on the unit disk

In this section, we derive an analytical expression which can be used to compute some of the radially symmetric Neumann eigenvalues on the unit disk for the Stokes operator.

Suppose that u is of the form

$$ {\boldsymbol u} = \nabla^{\perp} J_{0}(kr) , $$
(64)
and the pressure is given by p = 0, as u satisfies (Δ + k2)u = 0.

Then, the surface traction t on the circle of radius r is given by:

$$ {\boldsymbol t} = \left( -\frac{k}{r^{2}}J_{0}^{\prime}(kr) + \frac{k^{2}}{r} J_{0}^{\prime\prime}(kr)\right) \left[\begin{array}{ll} {\sin{(\theta)}} \\ -{\cos{(\theta)}} \end{array}\right] . $$
(65)
Thus, the values k which satisfy:
$$ -k J_{0}^{\prime}(kr) + k^{2} J_{0}^{\prime\prime}(kr) = 0 , $$
(66)
are Neumann eigenvalues on the unit disk. The first 4 roots of (66) are in Table 1.

Table 1 Roots of (7)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askham, T., Rachh, M. A boundary integral equation approach to computing eigenvalues of the Stokes operator. Adv Comput Math 46, 20 (2020). https://doi.org/10.1007/s10444-020-09774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09774-2

Keywords

Mathematics Subject Classification (2010)

Navigation