Skip to main content
Log in

Linear hybrid-variable methods for advection equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a general hybrid-variable (HV) framework to solve linear advection equations by utilizing both cell-average approximations and nodal approximations. The construction is carried out for 1D problems, where the spatial discretization for cell averages is obtained from the integral form of the governing equation whereas that for nodal values is constructed using hybrid-variable discrete differential operators (HV-DDO); explicit Runge-Kutta methods are employed for marching the solutions in time. We demonstrate the connection between the HV-DDO and Hermite interpolation polynomials, and show that it can be constructed to arbitrary order of accuracy. In particular, we derive explicit formula for the coefficients to achieve the optimal order of accuracy given any compact stencil of the HV-DDO. The superconvergence of the proposed HV methods is then proved: these methods have one-order higher spatial accuracy than the designed order of the HV-DDO; in contrast, for conventional methods that only utilize one type of variables, the two orders are the same. Hence, the proposed method can potentially achieve higher-order accuracy given the same computational cost, comparing to existing finite difference methods. We then prove the linear stability of sample HV methods with up to fifth-order accuracy in the case of Cauchy problems. Next, we demonstrate how the HV methods can be extended to 2D problems as well as nonlinear conservation laws with smooth solutions. The performance of the sample HV methods are assessed by extensive 1D and 2D benchmark tests of linear advection equations, the nonlinear Euler equations, and the nonlinear Buckely-Leverett equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barth, T.J.: Recent developments in high order k-exact reconstruction on unstructured meshes. In: 31st AIAA Aerospace Sciences Meeting & Exhibit. Reno, Nevada (1993)

  2. Berndt, M., Lipnikov, K., Shashkov, M., Wheeler, M.F., Yotov, I.: Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43(4), 1728–1749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems- methodology and application to high-order compact schemes. J. Comput. Phys. 111(2), 220–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Després, B.: Uniform asymptotic stability of Strang’s explicit compact schemes for linear advection. SIAM J. Numer. Anal. 47(5), 3956–3976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Mod. Meth. Appl. Sci. 24(8), 1575–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Mod. Meth. Appl. Sci. 20(2), 265–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput. Phys. 227(18), 8209–8253 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodrich, J., Hagstrom, T., Lorenz, J.: Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 75(254), 595–630 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.W.: Total variational diminishing Runge-Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MATH  Google Scholar 

  11. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE, Springer Series in Computational Mathematics, vol. 38, 1st edn. Springer (2008)

  12. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Series in Computational Mathematics, vol. 8, 2 edn. Springer (1993)

  13. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 217–237 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Huynh, H.T.: A Piecewise-Parabolic Dual-Mesh Method for the Euler Equations. In: 12Th AIAA Computational Fluid Dynamics Conference. San Diego, California (1995)

  15. Imai, Y., Aoki, T., Takizawa, K.: Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics. J. Comput. Phys. 227(4), 2263–2285 (2008)

    Article  MATH  Google Scholar 

  16. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods, reprint edn Dover Publication (1994)

  17. Iserles, A.: Order stars and a saturation theorem for first-order hyperbolics. IMA J. Numer. Anal. 2(1), 49–61 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Iserles, A.: Generalized leapfrog methods. IMA J. Numer. Anal. 6(4), 381–392 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iserles, A., Strang, G.: The optimal accuracy of difference schemes. T. Am. Math. Soc. 277(2), 779–803 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karabasov, S.A., Goloviznin, V.M.: Compact accurately boundary-adjusting high-resolution technique for fluid dynamics. J. Comput. Phys. 228(19), 7426–7451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Leer, B.: Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys. 23(3), 276–299 (1977)

    Article  MATH  Google Scholar 

  23. van Leer, B.: Towards the ultimate conservative difference scheme V. A second-order sequel to godunov’s method. J. Comput. Phys. 32(1), 101–136 (1979)

    Article  MATH  Google Scholar 

  24. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge texts in applied mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  25. LeVeque, R.J.: Numerical Methods for Conservation Laws, 2nd edn. Lectures in mathematics. Birkhäuser (2005)

  26. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Luther, H.A.: Further explicit fifth-order runge-kutta formulas. SIAM Rev. 8 (3), 374–380 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rusanov, V.V.: The calculation of interaction of non-steady shock waves with obstacles. USSR Comput. Math. Math. Phys. 1(2), 304–320 (1962)

    Article  Google Scholar 

  30. Sanders, R., Weiser, A.: High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws. J. Comput. Phys. 101(2), 314–329 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shu, C.W.: High-order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD. Int. J. Comput. Fluid D. 17(2), 107–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27(1), 1–31 (1978). Review

    Article  MathSciNet  MATH  Google Scholar 

  33. Strang, G.: Trigonometric polynomials and difference methods of maximum accuracy. J. Math. and Phys. 41(1–4), 147–154 (1962)

    Article  MATH  Google Scholar 

  34. Szegö, G.: Orthogonal Polynomials Colloquium Publications, vol. XXIII, 4th edn. Providence, RI (1975)

  35. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, 3rd. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  36. Xiao, F., Ikebata, A., Hasegawa, T.: Numerical simulations of free-interface fluids by a multi-integrated moment method. Comput. Struct. 83(6–7), 409–423 (2005)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z.C., Yu, S.T.J., Chang, S.C.: A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady euler equations using quadrilateral and hexahedral meshes. J. Comput. Phys. 175(1), 168–199 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the University of Texas at El Paso for the general support in the form of research start-up fund. The author would like to thank Prof. George Papanicolaou for the fruitful discussion at the beginning stage of this project at Stanford University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyi Zeng.

Additional information

Communicated by: Jean-Frédéric Gerbeau

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X. Linear hybrid-variable methods for advection equations. Adv Comput Math 45, 929–980 (2019). https://doi.org/10.1007/s10444-018-9647-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9647-z

Keywords

Mathematics Subject Classification (2010)

Navigation