Skip to main content
Log in

An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We describe a method for the rapid numerical evaluation of the Bessel functions of the first and second kinds of nonnegative real orders and positive arguments. Our algorithm makes use of the well-known observation that although the Bessel functions themselves are expensive to represent via piecewise polynomial expansions, the logarithms of certain solutions of Bessel’s equation are not. We exploit this observation by numerically precomputing the logarithms of carefully chosen Bessel functions and representing them with piecewise bivariate Chebyshev expansions. Our scheme is able to evaluate Bessel functions of orders between 0 and 1,000,000,000 at essentially any positive real argument. In that regime, it is competitive with existing methods for the rapid evaluation of Bessel functions and has at least three advantages over them. First, our approach is quite general and can be readily applied to many other special functions which satisfy second order ordinary differential equations. Second, by calculating the logarithms of the Bessel functions rather than the Bessel functions themselves, we avoid many issues which arise from numerical overflow and underflow. Third, in the oscillatory regime, our algorithm calculates the values of a nonoscillatory phase function for Bessel’s differential equation and its derivative. These quantities are useful for computing the zeros of Bessel functions, as well as for rapidly applying the Fourier-Bessel transform. The results of extensive numerical experiments demonstrating the efficacy of our algorithm are presented. A Fortran package which includes our code for evaluating the Bessel functions is publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amos, D.E.: Algorithm 644: a portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Softw. 3, 265–273 (1986)

    MathSciNet  MATH  Google Scholar 

  2. Bochner, S., Martin, W.: Several Complex Variables. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  3. Bremer, J.: On the numerical calculation of the roots of special functions satisfying second order ordinary differential equations. SIAM J. Sci. Comput. 39, A55–A82 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bremer, J.: On the numerical solution of second order differential equations in the high-frequency regime. Appl. Comput. Harmon. Anal. To appear (2017)

  5. Bremer, J., Rokhlin, V.: Improved estimates for nonoscillatory phase functions. Discrete and Continuous Dynamical Systems, Series A 36, 4101–4131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candés, E., Demanet, L., Ying, L.: Fast computation of Fourier integral operators. SIAM J. Sci. Comput. 29, 2464–2493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candés, E., Demanet, L., Ying, L.: Fast butterfly algorithm for the computation of Fourier integral operators. SIAM Journal on Multiscale Modeling and Simulation 7, 1727–1750 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  9. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V.: NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.13 of 2016-09-16

  10. Erdélyi, A. et al.: Higher Transcendental Functions, vol. II. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  11. Fedoryuk, M.V.: Asymptotic Analysis. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  12. Fefferman, C.: On the convergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 744–745 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  14. Heitman, Z., Bremer, J., Rokhlin, V., Vioreanu, B.: On the asymptotics of Bessel functions in the Fresnel regime. Appl. Comput. Harmon. Anal. 39, 347–355 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  16. Hille, E.: Ordinary Differential Equations in the Complex Domain. Wiley, New York (1976)

    MATH  Google Scholar 

  17. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  18. Kummer, E.: De generali quadam aequatione differentiali tertti ordinis. Progr. Evang. Köngil. Stadtgymnasium Liegnitz (1834)

  19. Li, Y., Yang, H.: Interpolative butterfly factorization. SIAM J. Sci. Comput. To appear

  20. Li, Y., Yang, H., Martin, E., Ho, K.L., Ying, L.: Butterfly factorization. SIAM Journal on Multiscale Modeling and Simulation 13, 714–732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mason, J., Handscomb, D.: Chebyshev Polynomials. Chapman and Hall, London (2003)

    MATH  Google Scholar 

  22. Matviyenko, G.: On the evaluation of Bessel functions. Appl. Comput. Harmon. Anal. 1, 116–135 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michielssen, E., Boag, A.: A multilevel matrix decomposition algorithm for analyzing scattering from large structures. IEEE Trans. Antennas Propag. 44, 1086–1093 (1996)

    Article  Google Scholar 

  24. Miller, J.: On the choice of standard solutions for a homogeneous linear differential equation of the second order. Q. J. Mech. Appl. Math. 3, 225–235 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  25. Olver, F.W.: Asymptotics and Special Functions. A.K. Peters, Natick (1997)

    Book  MATH  Google Scholar 

  26. O‘Neil, M., Woolfe, F., Rokhlin, V.: An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal. 28, 203–226 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trefethen, N.: Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    MATH  Google Scholar 

  28. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, New York (1995)

    Google Scholar 

Download references

Acknowledgments

The author was supported by National Science Foundation grant DMS-1418723, and by a UC Davis Chancellor’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Bremer.

Additional information

Communicated by: Alexander Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bremer, J. An algorithm for the rapid numerical evaluation of Bessel functions of real orders and arguments. Adv Comput Math 45, 173–211 (2019). https://doi.org/10.1007/s10444-018-9613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-9613-9

Keywords

Mathematics Subject Classification (2010)

Navigation