Skip to main content
Log in

High dimensional finite elements for time-space multiscale parabolic equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The paper develops the essentially optimal sparse tensor product finite element method for a parabolic equation in a domain in \(\mathbb {R}^{d}\) which depends on a microscopic scale in space and a microscopic scale in time. We consider the critical self similar case which has the most interesting homogenization limit. We solve the high dimensional time-space multiscale homogenized equation, which provides the solution to the homogenized equation which describes the multiscale equation macroscopically, and the corrector which encodes the microscopic information. For obtaining an approximation within a prescribed accuracy, the method requires an essentially optimal number of degrees of freedom that is essentially equal to that for solving a macroscopic parabolic equation in a domain in \(\mathbb {R}^{d}\). A numerical corrector is deduced from the finite element solution. Numerical examples for one and two dimensional problems confirm the theoretical results. Although the theory is developed for problems with one spatial microscopic scale, we show numerically that the method is capable of solving problems with more than one spatial microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulle, A., E, W., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta Numer. 21, 1–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Huber, M.E.: Finite element heterogeneous multiscale method for nonlinear monotone parabolic homogenization problems. ESAIM Math. Model. Numer Anal. 50(6), 1659–1697 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdulle, A., Vilmart, G.: Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete spacetime analysis. Math. Models Methods Appl. Sci. 22(6), 1250002 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures, volume 5 of studies in mathematics and its applications. North-Holland Publishing Co., Amsterdam (1978)

    MATH  Google Scholar 

  6. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31(6), 4281–4304 (2009/10)

  7. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, S., E, W., Shu, C.-W.: The heterogeneous multiscale method based on the discontinuous Galerkin method for hyperbolic and parabolic problems. Multiscale Model Simul. 3(4), 871–894 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu, V.T., Hoang, V.H.: High dimensional finite elements for multiscale Maxwell-type equations. IMA J. Numer. Anal. 38(1), 227–270 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung, E.T., Efendiev, Y., Leung, W.T., Ye, S.: Generalized multiscale finite element methods for space-time heterogeneous parabolic equations. Comput. Math Appl. 76(2), 419–437 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585–1620 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Douglas, J. Jr., Dupont, T.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7, 575–626 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. Efendiev, Y., Hou, T.Y.: Multiscale finite element methods: theory and applications. surveys and tutorials in the applied mathematical sciences. Springer (2009)

  14. Efendiev, Y., Pankov, A.: Numerical homogenization of nonlinear random parabolic operators. Multiscale Model Simul. 2(2), 237–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J. Comput. Phys. 251, 116–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Evans, L.C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1998)

    Google Scholar 

  17. Geng, J., Shen, Z.: Convergence rates in parabolic homogenization with time-dependent periodic coefficients. J. Funct Anal. 272(5), 2092–2113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4(1), 171–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)

    Book  Google Scholar 

  20. Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2004/05)

  21. Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math. 50(2), 131–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kazeev, V., Oseledets, I., Rakhuba, M., Schwab, C.: QTT-finite-element approximation for multiscale problems I: model problems in one dimension. Adv. Comput. Math. 43(2), 411–442 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. I. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  25. Målqvist, A., Persson, A.: Multiscale techniques for parabolic equations. Numer. Math. 138(1), 191–217 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Målqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comp. 83(290), 2583–2603 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math Comp. 76(257), 153–177 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20(3), 608–623 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Owhadi, H., Zhang, L.: Homogenization of parabolic equations with a continuum of space and time scales. SIAM J. Numer. Anal. 46(1), 1–36 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tan, W.C., Hoang, V.H.: High dimensional finite element method for multiscale nonlinear monotone parabolic equations. J. Comput. Appl. Math. 345, 471–500 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wloka, J.: Partial differential equations. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  32. Woukeng, J.L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales. Ann. Mat. Pura Appl. (4) 189(3), 357–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xia, B., Hoang, V.H.: High dimensional finite elements for multiscale wave equations. Multiscale Model. Simul. 12(4), 1622–1666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xia, B., Hoang, V.H.: High-dimensional finite element method for multiscale linear elasticity. IMA J. Numer. Anal. 35(3), 1277–1314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xia, B., Hoang, V.H.: Sparse tensor finite elements for elastic wave equation with multiple scales. J. Comput. Appl. Math. 282, 179–214 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research topic originates from a discussion with Professor Christoph Schwab, ETH, Zurich. The authors gratefully acknowledge a postgraduate scholarship of A*Star, Singapore, the AcRF Tier 1 grant 2016-T1-001-202 RG30/16, the Singapore A*Star SERC grant 122-PSF-0007, and the AcRF Tier 2 grant MOE 2013-T2-1-095 ARC 44/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet Ha Hoang.

Additional information

Communicated by: Ivan Oseledets

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We prove Theorem 3.2 in this appendix. Let \(\rho _{0,m}={1\over {\Delta } t}(u_{0}(t_{m + 1})-u_{0}(t_{m}))-{\partial u_{0}\over \partial t}(t_{m + 1/2})\), \(\zeta _{0,m}=\frac 12(u_{0}(t_{m + 1})+u_{0}(t_{m}))-u_{0}(t_{m + 1/2})\), \(\zeta _{1,m}=\frac 12(u_{1}(t_{m + 1})+u_{1}(t_{m}))-u_{1}(t_{m + 1/2})\) and \(\xi _{1,m}={1\over 2}\left ({\partial u_{1}\over \partial \tau }(t_{m + 1})+{\partial u_{1}\over \partial \tau }(t_{m})\right )-{\partial u_{1}\over \partial \tau }(t_{m + 1/2})\). Since u0C3([0, T], H) ∩ C2([0, T], V ), u1C2([0, T], L2(D × (0, 1), V#)) and \({\partial u_{1}\over \partial \tau }\in C^{2}([0,T],L^{2}(D\times (0,1),V^{\prime }_\#))\), we deduce that

$$\begin{array}{@{}rcl@{}} && \|\rho_{0,m}\|_{L^{2}(D)}\le c({\Delta} t)^{2}, \|\zeta_{0,m}\|_{V}\le c({\Delta} t)^{2}, \|\zeta_{1,m}\|_{V_{1}}\le c({\Delta} t)^{2}, \text{ and }\\ &&\|\xi_{1,m}\|_{L^{2}(D\times(0,1),V_{\#}^{\prime})}\le c({\Delta} t)^{2} \end{array} $$

where the constant c does not depend on m. From (2.1) and (3.1) considered at t = tm+ 1/2 we deduce that

$$\begin{array}{@{}rcl@{}} &&\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},\phi_{0}\right\rangle_{H}+\langle\rho_{0,m},\phi_{0}\rangle_{H}\\ &&\qquad +{\int}_{D}{{\int}_{0}^{1}}\left\langle{1\over 2}\left( {\partial z_{1,m + 1}\over\partial\tau}+{\partial z_{1,m}\over\partial\tau}\right),\phi_{1}\right\rangle_{H_\#} d\tau dx+ {\int}_{D}{{\int}_{0}^{1}}\langle\xi_{1},\phi_{1}\rangle_{H_\#} d\tau dx\\ &&\qquad +{\int}_{D}{{\int}_{0}^{1}}{\int}_{Y}a(t_{m + 1/2})\left( \nabla_{x}{z_{0,m + 1}+z_{0,m}\over 2}+\nabla_{y}{z_{1,m + 1}+z_{1,m}\over 2}\right)\\ &&\qquad \cdot(\nabla_{x}\phi_{0}+\nabla_{y}\phi_{1})dyd\tau dx\\ &&\qquad+{\int}_{D}{{\int}_{0}^{1}}{\int}_{Y}a(t_{m + 1/2})(\nabla_{x}\zeta_{0,m}+\nabla_{y}\zeta_{1,m})\cdot(\nabla_{x}\phi_{0}+\nabla_{y}\phi_{1})dyd\tau dx= 0.\\ \end{array} $$
(A.1)

Consider

$$\begin{array}{@{}rcl@{}} I &=& \left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},{z_{0,m + 1}+z_{0,m}\over2}\right\rangle_{H}\\ &&+ {\int}_{D}{{\int}_{0}^{1}}\left\langle{1\over 2}\left( {\partial z_{1,m + 1}\over\partial\tau}+{\partial z_{1,m}\over\partial\tau}\right),{z_{1,m + 1}+z_{1,m}\over 2}\right\rangle_{H_\#}d{\tau}dx\\ &&+{\int}_{D}{{\int}_{0}^{1}}{\int}_{Y}a(t_{m + 1/2})\left( \nabla_{x}{z_{0,m + 1}+z_{0,m}\over2}+\nabla_{y}{z_{1,m + 1}+z_{1,m}\over 2}\right)\\ && \cdot \left( \nabla_{x}{z_{0,m + 1}+z_{0,m}\over2}+\nabla_{y}{z_{1,m + 1}+z_{1,m}\over 2}\right)dyd{\tau}dx\\ &\ge& {1\over2{\Delta} t}(\|z_{0,m + 1}\|^{2}_{H}-\|z_{0,m}\|_{H}^{2})+\gamma(\|z_{0,m + 1/2}\|^{2}_{V}+\|z_{1,m + 1/2}\|^{2}_{V_{1}}).\qquad \end{array} $$
(A.2)

For \(\{\tilde u_{0,m},\ m = 0,\ldots ,M\}\subset V^{L}\) and \(\{\tilde u_{1,m},\ m = 1,\ldots ,M\}\subset {V_{1}^{L}}\), we have

$$\begin{array}{@{}rcl@{}} I&=&\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H+\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(\tilde u_0-U_0)_{m + 1/2}\right\rangle_H\\ &&+{\int}_D{\int}_0^{1}\left\langle{1\over2}\left( {\partial z_{1,m + 1}\over\partial\tau}+{\partial z_{1,m}\over\partial\tau}\right),(u_1-\tilde u_1)_{m + 1/2}\right\rangle_{H_\#}d\tau dx\\ &&+{\int}_D{\int}_0^{1}\left\langle{1\over2}\left( {\partial z_{1,m + 1}\over\partial\tau}+{\partial z_{1,m}\over\partial\tau}\right),(\tilde u_1-U_1)_{m + 1/2}\right\rangle_{H_\#}d\tau dx\\ &&+{\int}_D{\int}_0^{1}{\int}_Ya(t_{m + 1/2})\left( \nabla_x{z_{0,m + 1}+z_{0,m}\over 2}+\nabla_y{z_{1,m + 1}+z_{1,m}\over 2}\right)\\ &&\cdot\left( \nabla_x(u_0-\tilde u_0)_{m + 1/2}+\nabla_y(u_1-\tilde u_1)_{m + 1/2}\right)dyd\tau dx\\ &&+{\int}_D{\int}_0^{1}{\int}_Ya(t_{m + 1/2})\left( \nabla_x{z_{0,m + 1}+z_{0,m}\over 2}+\nabla_y{z_{1,m + 1}+z_{1,m}\over 2}\right)\\ &&\cdot \left( \nabla_x(\tilde u_0-U_0)_{m + 1/2}+\nabla_y(\tilde u_1-U_1)_{m + 1/2}\right)dyd\tau dx. \end{array} $$

From (3.1) we have

$$\begin{array}{@{}rcl@{}} I&=&\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H\\ &&-{\int}_D{\int}_0^{1}\left\langle{z_{1,m + 1}+z_{1,m}\over2},{\partial\over\partial\tau}(u_1-\tilde u_1)_{m + 1/2}\right\rangle_{H_\#}d{\tau}dx\\ &&+{\int}_D{\int}_0^{1}{\int}_Ya(t_{m + 1/2})\left( \nabla_x{z_{0,m + 1}+z_{0,m}\over 2}+\nabla_y{z_{1,m + 1}+z_{1,m}\over 2}\right)\\ &&\cdot\left( \nabla_x(u_0-\tilde u_0)_{m + 1/2}+\nabla_y(u_1-\tilde u_1)_{m + 1/2}\right)dyd\tau dx\\ &&- \langle\rho_{0,m},(\tilde u_0-U_0)_{m + 1/2}\rangle_H-{\int}_D{\int}_0^{1}\langle\xi_{1,m},(\tilde u_1-U_1)_{m + 1/2}\rangle_{H_\#}d\tau dx\\ &&+{\int}_D{\int}_0^{1}{\int}_Ya(t_{m + 1/2})\left( \nabla_x\zeta_{0,m}+\nabla_y\zeta_{1,m}\right)\\ &&\cdot\left( \nabla_x(\tilde u_0-U_0)_{m + 1/2}+\nabla_y(\tilde u_1-U_1)_{m + 1/2}\right)dyd\tau dx. \end{array} $$

We note that \((\tilde u_{0}-U_{0})_{m + 1/2}=(\tilde u_{0}-u_{0})_{m + 1/2}+z_{0,m + 1/2}\) and \((\tilde u_{1}-U_{1})_{m + 1/2}=(\tilde u_{1}-u_{1})_{m + 1/2}+z_{1,m + 1/2}\). For a positive constant δ > 0, using the Cauchy-Schwartz inequality, we have

$$\begin{array}{@{}rcl@{}} I\!\!&\le&\!\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H\\ &&\!+ \delta\|z_{1,m + 1/2}\|_{V_1}^{2}+c\left\|{\partial\over\partial\tau}(u_1-\tilde u_1)_{m + 1/2}\right\|_{V_{1}^{\prime}}^{2}\\ &&\!+\delta\|z_{0,m + 1/2}\|^{2}_V+\delta\|z_{1,m + 1/2}\|^{2}_{V_1} +c\|(u_0-\tilde u_0)_{m + 1/2}\|_V^{2}+c\|(u_1-\tilde u_1)_{m + 1/2}\|_{V_1}^{2}\\ &&+c\|\rho_{0,m}\|_H^{2}+c\|(\tilde u_0-u_0)_{m + 1/2}\|^{2}_H+\delta\|z_{0,m + 1/2}\|_H^{2}\\ &&+c\|\xi_{1,m}\|^{2}_{V_{1}^{\prime}}+c\|(\tilde u_1-u_1)_{m + 1/2}\|^{2}_{V_1}+\delta\|z_{1,m + 1/2}\|^{2}_{V_1}\\ &&+c\|\zeta_{0,m}\|_V^{2}+c\|\zeta_{1,m}\|_{V_1}^{2} +c\|(\tilde u_0-u_0)_{m + 1/2}\|^{2}_V+\delta\|z_{0,m + 1/2}\|_V^{2}\\ &&+c\|(\tilde u_1-u_1)_{m + 1/2}\|^{2}_{V_1}+\delta\|z_{1,m + 1/2}\|_V^{2}. \end{array} $$

From this and (A.2), choosing δ sufficiently small, we have

$$\begin{array}{@{}rcl@{}} &&{}{1\over 2{\Delta} t}(\|z_{0,m + 1}\|^{2}_H-\|z_{0,m}\|_H^{2})+c(\|z_{0,m + 1/2}\|^{2}_V+\|z_{1,m + 1/2}\|^{2}_{V_1})\\ &&\quad{} \le\!\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H\\ &&\qquad{}\! +\! c\left\|{\partial\over\partial\tau}(u_1 - \tilde u_1)_{m + 1{\kern-.5pt}/{\kern-.5pt}2}\right\|_{V_{1}^{\prime}}^{2}+c\|{\kern-.5pt}({\kern-.5pt}u_0-\tilde u_0{\kern-.5pt})_{m{\kern-.5pt}+{\kern-.5pt}1{\kern-.5pt}/2}\|_V^{2} + c{\kern-.5pt}\|{\kern-.5pt}({\kern-.5pt}u_1-\tilde u_1{\kern-.5pt})_{m{\kern-.5pt}+{\kern-.5pt}1{\kern-.5pt}/{\kern-.5pt}2}\|_{{\kern-.5pt}V_1}^{2}\!{\kern-.5pt}+\!c({\kern-.5pt}{\Delta} t{\kern-.5pt})^4{\kern-.5pt}. \end{array} $$

Fixing an integer PM, taking the sum for m = 0, … , P − 1, we have

$$\begin{array}{@{}rcl@{}} &&\|z_{0,P}\|_{H}^{2}-\|z_{0,0}\|_{H}^{2}+c{\Delta} t\sum\limits_{m = 0}^{P-1}(\|z_{0,m + 1/2}\|_{V}^{2}+\|z_{1,m + 1/2}\|^{2}_{V_{1}})\\ &&\le c{\Delta} t\sum\limits_{m = 0}^{P-1}\left( \left\|{\partial\over\partial\tau}(u_{1}-\tilde u_{1})_{m + 1/2}\right\|_{V_{1}^{\prime}}^{2} + \|(u_{0}-\tilde u_{0})_{m + 1/2}\|_{V}^{2}+\|(u_{1}-\tilde u_{1})_{m + 1/2}\|_{V_{1}}^{2}\right)\\ &&cP({\Delta} t)^{5}+ 2{\Delta} t\sum\limits_{m = 0}^{P-1}\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_{0}-\tilde u_{0})_{m + 1/2}\right\rangle_{H}. \end{array} $$
(A.3)

We note that

$$\begin{array}{@{}rcl@{}} &&{\Delta} t{\sum}_{m = 0}^{P-1}\left\langle{z_{0,m + 1}-z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H\\ && \qquad\qquad=\left\langle z_{0,P},(u_0-\tilde u_0)_{P-1/2}\right\rangle_H-\left\langle z_{0,0},(u_0-\tilde u_0)_{1/2}\right\rangle_H\\ &&\qquad\qquad\qquad+{\Delta} t{\sum}_{m = 1}^{P-1}\left\langle{z_{0,m}\over{\Delta} t},(u_0-\tilde u_0)_{m-1/2}-(u_0-\tilde u_0)_{m + 1/2}\right\rangle_H\\ &&\qquad\qquad\le \delta\|z_{0,P}\|_H^{2}+c\|(u_0-\tilde u_0)_{P-1/2}\|_H^{2}+\|z_{0,0}\|_H^{2}+\|(u_0-\tilde u_0)_{1/2}\|_H^{2}\\ &&\qquad\qquad\qquad+\delta{\Delta} t{\sum}_{m = 1}^{P-1}\|z_{0,m}\|_H^{2}+c{\Delta} t{\sum}_{m = 1}^{P-1}\left\|{(u_0-\tilde u_0)_{m + 1/2}-(u_0-\tilde u_0)_{m-1/2}\over{\Delta} t}\right\|_H^{2} \end{array} $$

which is a consequence of the Cauchy-Schwartz inequality; δ is an arbitrary positive constant. We note that \({\Delta } t{\sum }_{m = 1}^{P-1}\|z_{0,m}\|_{H}^{2}\le {\Delta } t P\max _{m = 0,\ldots ,M}\|z_{0,m}\|_{H}^{2}\le T\max _{m = 0,\ldots ,M}\|z_{0,m}\|_{H}^{2}\). From this and (A.3), choosing δ sufficiently small, we have

$$\begin{array}{@{}rcl@{}} \|z_{0,P}\|^{2}_H\!&\le&\! c{\Delta} t{\sum}_{m = 0}^{P-1}\left( \left\|{\partial\over\partial\tau}(u_1-\tilde u_1)_{m + 1/2}\right\|^{2}_{V_{1}^{\prime}} +\|(u_0-\tilde u_0)_{m + 1/2}\|_V^{2}\right.\\ &&\qquad\qquad \left.+\|(u_1-\tilde u_1)_{m + 1/2}\|_{V_1}^{2}\vphantom{\left\|{\partial\over\partial\tau}\right\|^{2}_{V_{1}^{\prime}}}\right)\\ &&\!+c({\Delta} t)^4+c\|(u_0-\tilde u_0)_{P-1/2}\|_H^{2}+ 2\|z_{0,0}\|_H^{2}+\|(u_0-\tilde u_0)_{1/2}\|_H^{2}\\ &&\!+c{\Delta} t{\sum}_{m = 1}^{P-1}\left\|{(u_0-\tilde u_0)_{m + 1/2}-(u_0-\tilde u_0)_{m-1/2}\over{\Delta} t}\right\|_H^{2}+ \delta T\max_{m = 0,\ldots,M}\|z_{0,M}\|_H^{2}. \end{array} $$

Choosing δ sufficiently small, we have

$$\begin{array}{@{}rcl@{}} \max_{m = 0,\ldots,M}\|z_{0,m}\|_H^{2}&\le& c{\Delta} t{\sum}_{m = 0}^{M-1}\left( \left\|{\partial\over\partial\tau}(u_1-\tilde u_1)_{m + 1/2}\right\|_{V_{1}^{\prime}}^{2} +\|(u_0-\tilde u_0)_{m + 1/2}\|_V^{2}\right.\\ &&\qquad\qquad\left.~ +\|(u_1-\tilde u_1)_{m + 1/2}\|_{V_1}^{2}\vphantom{\left\|{\partial\over\partial\tau}(u_1-\tilde u_1)_{m + 1/2}\right\|_{V_{1}^{\prime}}^{2}}\right)\\ &&+c({\Delta} t)^4+c\max_{m = 1,\ldots,M}\|(u_0-\tilde u_0)_{m-1/2}\|_H^{2}+c\|z_{0,0}\|_H^{2}\\ && +\|(u_0-\tilde u_0)_{1/2}\|_H^{2}\\ &&+c{\Delta} t{\sum}_{m = 1}^{M-1}\left\|{(u_0-\tilde u_0)_{m + 1/2}-(u_0-\tilde u_0)_{m-1/2}\over{\Delta} t}\right\|_H^{2}. \end{array} $$

From this, we get the conclusion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W.C., Hoang, V.H. High dimensional finite elements for time-space multiscale parabolic equations. Adv Comput Math 45, 1291–1327 (2019). https://doi.org/10.1007/s10444-018-09657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-018-09657-7

Keywords

Mathematics Subject Classification (2010)

Navigation