Skip to main content
Log in

Multivariate exponential analysis from the minimal number of samples

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The problem of multivariate exponential analysis or sparse interpolation has received a lot of attention, especially with respect to the number of samples required to solve it unambiguously. In this paper we show how to bring the number of samples down to the absolute minimum of (d + 1)n where d is the dimension of the problem and n is the number of exponential terms. To this end we present a fundamentally different approach for the multivariate problem statement. We combine a one-dimensional exponential analysis method such as ESPRIT, MUSIC, the matrix pencil or any Prony-like method, with some linear systems of equations because the multivariate exponents are inner products and thus linear expressions in the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G., Graves-Morris, P.: Padé Approximants Part I: Basic Theory Encyclopedia of Mathematics and its Applications, vol. 13. Addison Wesley, London (1981)

    Google Scholar 

  2. Ben-Or, M., Tiwari, P.: A deterministic algorithm for sparse multivariate polynomial interpolation. In: STOC ’88: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 301–309. ACM, New York (1988)

  3. Cuyt, A., Lee, W.-s.: Smart data sampling and data reconstruction. Patent US 61/611,899

  4. Cuyt, A., Lee, W.-s.: Smart data sampling and data reconstruction. Patent PCT/EP2012/066204

  5. Cuyt, A., Lee, W.-s.: Sparse interpolation and rational approximation. Contemp. Math. 661, 229–242 (2016). American Mathematical Society

    Article  MathSciNet  MATH  Google Scholar 

  6. Diederichs, B., Iske, A.: Parameter estimation for bivariate exponential sums. In: IEEE International Conference Sampling Theory and Applications (SampTA2015), pp. 493–497 (2015)

  7. Henrici, P.: Applied and Computational Complex Analysis I. Wiley, New York (1974)

    MATH  Google Scholar 

  8. Hildebrand, F.: Introduction to Numerical Analysis. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  9. Hua, Y.: Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans. Signal Process. 40(9), 2267–2280 (1992)

    Article  MATH  Google Scholar 

  10. Hua, Y., Sarkar, T.K.: Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38(5), 814–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaltofen, E., Lee, W.-s.: Early termination in sparse interpolation algorithms. J. Symb. Comput. 36(3-4), 365–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kunis, S., Peter, T., Römer, T., von der Ohe, U.: A multivariate generalization of Prony’s method. Linear Algebra Appl. 490, 31–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Razavilar, J., Liu, K.J.R.: A high-resolution technique for multidimensional NMR spectroscopy. IEEE Trans. Biomed. Eng. 45(1), 78–86 (1998)

    Article  Google Scholar 

  14. Mandelshtam, V.A.: The multidimensional filter diagonalization method: I. Theory and numerical implementation. J. Magn. Reson. 144(2), 343–356 (2000)

    Article  Google Scholar 

  15. Nyquist, H.: Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47(2), 617–644 (1928)

    Article  Google Scholar 

  16. Peter, T., Plonka, G., Schaback, R.: Reconstruction of multivariate signals via Prony’s method. Proc. Appl. Math. Mech. to appear

  17. Plonka, G., Wischerhoff, M.: How many Fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42(1-2), 117–137 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Potts, D., Tasche, M.: Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204–224 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Rouquette, S., Najim, M.: Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods. IEEE Trans. Signal Process. 49(1), 237–245 (2001)

    Article  MATH  Google Scholar 

  20. Roy, R., Kailath, T.: ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  MATH  Google Scholar 

  21. Sauer, T.: Prony’s method in several variables: symbolic solutions by universal interpolation. J. Symb. Comput. 84, 95–112 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sauer, T.: Prony’s method in several variables. Numer. Math. 136(2), 411–438 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmidt, R.: Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  24. Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37(1), 10–21 (1949)

    MathSciNet  Google Scholar 

  25. Shukla, P., Dragotti, P.L.: Sampling schemes for multidimensional signals with finite rate of innovation. IEEE Trans. Signal Process. 55(7), 3670–3686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wischerhoff, M., Plonka, G.: Reconstruction of polygonal shapes from sparse Fourier samples. J. Comput. Appl. Math. 297, 117–131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yilmazer, N., Fernandez-Recio, R., Sarkar, T.K.: Matrix pencil method for simultaneously estimating azimuth and elevation angles of arrival along with the frequency of the incoming signals. Digital Signal Process. 16(6), 796–816 (2006)

    Article  Google Scholar 

  28. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. Ph.D. Thesis, Massachusetts Institute of Technology (1979)

Download references

Acknowledgements

This work was partially supported by a Research Grant of the FWO-Flanders (Flemish Science Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-shin Lee.

Additional information

Communicated by: Yuesheng Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuyt, A., Lee, Ws. Multivariate exponential analysis from the minimal number of samples. Adv Comput Math 44, 987–1002 (2018). https://doi.org/10.1007/s10444-017-9570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9570-8

Keywords

Mathematics Subject Classification (2010)

Navigation