Skip to main content
Log in

Computing ultra-precise eigenvalues of the Laplacian within polygons

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The classic eigenvalue problem of the Laplace operator inside a variety of polygons is numerically solved by using a method nearly identical to that used by Fox, Henrici, and Moler in their 1967 paper. It is demonstrated that such eigenvalue calculations can be extended to unprecedented precision, often to well over a hundred digits, or even thousands of digits. To work well, geometric symmetry must be exploited. The de-symmetrized fundamental domains (usually triangular) considered here have at most one non-analytic vertex. Dirichlet, Neumann, and periodic-type edge conditions are independently imposed on each symmetry-reduced polygon edge. The method of particular solutions is used whereby an eigenfunction is expanded in an N-term Fourier-Bessel series about the non-analytic vertex and made to match at a set of N points on the boundary. Under the right conditions, the so-called point-matching determinant has roots that approximate eigenvalues. A key observation is that by increasing the number of terms in the expansion, the approximate eigenvalue may be made to alternate above and below, while approaching what is presumed to be the exact eigenvalue. This alternation effectively provides a new method to bound eigenvalues, by inspection. Specific examples include Dirichlet and Neumann eigenvalues within polygons with re-entrant angles (L-shape, cut-square, 5-point star) and the regular polygons. Thousand-digit results are reported for the lowest Dirichlet eigenvalues of the L-shape, and regular pentagon and hexagon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amore, P., Boyd, J.P., Fernandez, F.M., Rosler, B.: High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson Extrapolation of second order finite differences. 2015. arXiv:1509.02795

  2. Barnett, A., Hassell, A. : Fast computation of high frequency Dirichlet eigenmodes via spectral flow of the interior Neumann-to-Dirichlet map. Comm. Pure Appl. Math. 67(3), 351–407 (2014). More recent reference to MPSpack

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnett A.H., Betcke T.: An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comp. 32 (3), 1417–1441 (2010) http://code.google.com/p/mpspack

    Article  MathSciNet  MATH  Google Scholar 

  4. Barta, J.: Über die näherungsweise Lösung eigiger zweidimensionaler Elastizitätsaufgaben. Zeitschrift für angewandte Mathematik und Mechanik 17, 184 (1937)

    Article  MATH  Google Scholar 

  5. Bauer, L., Reiss, E.L.: Cutoff wavenumbers and modes of hexagonal waveguides. SIAM J. of Appl. Math. 35, 508–514 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betcke, T., Trefethen, L.N.: Reviving the method of particular solutions. SIAM Rev. 47, 469–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boady, M.: Applications of Symbolic Computation to the Calculus of Moving Surfaces. PhD thesis, Drexel University, Philadelphia, PA (2015)

    Google Scholar 

  8. Conway, H.D.: The bending, buckling, and flexural vibrations of simply supported polygonal plates by point matching. Trans. ASME J. Appl. Mech. 83E, 288–291 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cureton, L.M., Kuttler, J.R.: Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection. J. Sound Vib. 220, 83–98 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fox, L., Henrici, P., Moler, C.: Approximation and bounds for eigenvalues of elliptic operators. SIAM J. Numer. Anal. 4, 89–102 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Torbjörn Granlund and the GMP development team: GNU MP: The GNU Multiple Precision Arithmetic Library 6.0.0 edition (2015). Available online http://gmplib.org/

  12. Guidotti, P., Lambers, J.V.: Eigenvalue characterization and computation for the Laplacian on general 2-D domains. Numer. Funct. Anal. Optim. 29, 507–531 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hersch, J.: Erweiterte symmetrieeigenschaften von lösungen gewisser linearer rand- und eigenwertprobleme. J. reine angew. Math. 218, 143–158 (1965)

    MathSciNet  MATH  Google Scholar 

  14. Hillairet, L., Judge, C.: Generic spectral simplicity of polygons. Proc. Amer. Math. Soc. 137, 2139–2145 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones, R.S.: The one-dimensional three-body problem and selected waveguide problems: solutions of the two-dimensional Helmholtz equation . PhD thesis, The Ohio State University (1993)

    Google Scholar 

  16. Kuttler, J.R., Sigillito, V.G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26, 163–193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lanz, C.: The use of Schwarz-Christoffel transformations in determining acoustic resonances. Master’s thesis, Virginia Polytechnic Institute and State University (2010)

  18. Maxima: Maxima, a Computer Algebra System. Version 5.31 (2015). http://maxima.sourceforge.net/

  19. Moler, C.B., Payne, L.E.: Bounds for eigenvalues and eigenvectors of symmetric operators. SIAM J. Numer. Anal. 5, 64–70 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oikonomoum, V.K.: Casimir energy for a regular polygon with Dirichlet boundaries. 2010. arXiv:1012.5376

  21. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, 2010. Published electronically at http://oeis.org

  22. Strang, G., Grinfeld, P.: The Laplacian eigenvalues of a polygon. Computers and Mathematics with Applications 48, 1121–1133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. The PARI Group: Bordeaux. PARI/GP version 2.7.3 (2015). Available online http://pari.math.u-bordeaux.fr/

  24. Trefethen, L.N., Betcke, T.: Computed eigenmodes of planar regions. Contemp. Math., Amer. Math. Soc. 412, 297–314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yuan, Q., He, Z.: Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods. J. Comp. Appl. Math. 233, 1083–1090 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I wish to thank Alex Barnett for making the specific suggestion to expand about the non-analytic vertex using fractional-order Bessel functions, i.e., non-integral m-values (private communication, December 2014). Indeed, after sharing some regular pentagon results with him, he suggested that instead of expanding about the center of the regular pentagon, I should expand about one of its vertices. That one simple, and—in hind-sight—obvious suggestion, immediately turned my eight-digit calculations into multi-hundred-digit calculations because of the exponential convergence. I also wish to thank James Kuttler and Nick Trefethen for suggestions and encouragement. I am also encouraged by the recent independent efforts of Mark Boady and Paolo Amore, et al., and wish to thank them for interesting dialogs. Of course, this project was made possible by free software, most specifically GMP [11] and the GP/PARI [23] calculator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stephen Jones.

Additional information

Communicated by: Alexander Barnett

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, R.S. Computing ultra-precise eigenvalues of the Laplacian within polygons. Adv Comput Math 43, 1325–1354 (2017). https://doi.org/10.1007/s10444-017-9527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9527-y

Keywords

Mathematics Subject Classification (2010)

Navigation