Skip to main content
Log in

Cardinal interpolation with general multiquadrics

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies the cardinal interpolation operators associated with the general multiquadrics, ϕ α, c (x)=(∥x2 + c 2)α, \(x\in \mathbb {R}^{d}\). These operators take the form

$$\mathcal{I}_{\alpha,c}\mathbf{y}(x) = \sum\limits_{j\in\mathbb{Z}^{d}}y_{j}L_{\alpha,c}(x-j),\quad\mathbf{y}=(y_{j})_{j\in\mathbb{Z}^{d}},\quad x\in\mathbb{R}^{d}, $$

where L α, c is a fundamental function formed by integer translates of ϕ α, c which satisfies the interpolatory condition \(L_{\alpha ,c}(k) = \delta _{0,k},\; k\in \mathbb {Z}^{d}\). We consider recovery results for interpolation of bandlimited functions in higher dimensions by limiting the parameter \(c\to \infty \). In the univariate case, we consider the norm of the operator \(\mathcal {I}_{\alpha ,c}\) acting on p spaces as well as prove decay rates for L α, c using a detailed analysis of the derivatives of its Fourier transform, \(\widehat {L_{\alpha ,c}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of mathematical functions: with formulas, graphs, and mathematical tables. No 55 Courier Dover Publications (1972)

  2. Ball, K., Sivakumar, N., Ward, J.D.: On the sensitivity of radial basis interpolation to minimal data separation distance. Constr. Approx 8(4), 401–426 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, B.J.C.: The asymptotic cardinal function of the multiquadratic \(\phi (r)=(r^{2}+ c^{2}){~}^{\frac {1}{2}}\) as \(c\to \infty \). Comput. Math. Appl. 24(12), 1–6 (1992)

    Article  MathSciNet  Google Scholar 

  4. Baxter, B.J.C., Sivakumar, N.: On shifted cardinal interpolation by Gaussians and multiquadrics. J. Approx. Theory 87(1), 36–59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beatson, R.K., Levesley, J., Mouat, C.T.: Better bases for radial basis function interpolation problems. J. Comput. Appl. Math 236(4), 434–446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, C., Sharpley, R.: Interpolation of operators new york (1988)

  7. Buhmann, M.: Multivariate cardinal interpolation with radial-basis functions. Constr. Approx 6.3, 225–255 (1990)

    Article  Google Scholar 

  8. Buhmann, M.: Radial functions on compact support, Proc. Edinburgh. Math. Soc. (2) 41(1), 33–46 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Buhmann, M.: Radial basis functions: theory and implementations, Vol. 12 Cambridge University Press (2003)

  10. Buhmann, M., Micchelli, C.A.: Multiquadric interpolation improved. Comput. Math. Appl 24(12), 21–25 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Driscoll, T., Fornberg, B.: Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl 43, 413–422 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput 34(2), A737–A762 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fornberg, B., Flyer, N.: A primer on radial basis functions with applications to the geosciences, vol. 87 SIAM (2015)

  14. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput 33(2), 869–892 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl 49 (1), 103–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornberg, B., Wright, G.B.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl 48(5), 853–867 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Localized bases for kernel spaces on the unit sphere. SIAM J. Numer. Anal 51(5), 2538–2562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hangelbroek, T., Madych, W., Narcowich, F., Ward, J.: Cardinal interpolation with Gaussian kernels. J. Fourier Anal. Appl 18, 67–86 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hangelbroek, T., Narcowich, F.J., Rieger, C., Ward, J.D.: An inverse theorem on bounded domains for meshless methods using localized bases. arXiv preprint arXiv:1406.1435 (2014)

  20. Hangelbroek, T., Narcowich, F.J., Ward, J.D.: Kernel approximation on manifolds I: Bounding the Lebesgue constant. SIAM J. Math. Anal 42(4), 1732–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hangelbroek, T., Narcowich, F.J., Sun, X., Ward, J.D.: Kernel approximation on manifolds II: the \(L_{\infty }\) norm of the L 2 projector. SIAM J. Math. Anal 43(2), 662–684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Katznelson, Y.: An introduction to harmonic analysis, Third Edition, Dover (2004)

  23. Ledford, J.: On the convergence of regular families of cardinal interpolators. Adv. Comput. Math 41(2), 357–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ledford, J.: Convergence properties of spline-like cardinal interpolation operators acting on p data. (submitted) arXiv:1312.4062 (2013)

  25. Madych, W.R.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl 24(12), 121–138 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marsden, M.J., Richards, F.B., Riemenschneider, S.D.: Cardinal spline interpolation operators on p data. Indiana Univ. Math. J 24, 677-689 (1975). Erratum, ibid. 25 (1976), 919

    Article  MathSciNet  MATH  Google Scholar 

  27. Narcowich, F.J., Rowe, S.T., Ward, J.D.: A novel Galerkin method for solving PDEs on the sphere using highly localized kernel bases. arXiv preprint, arXiv:1404.5263 (2014)

  28. Riemenschneider, S.D., Sivakumar, N.: Cardinal interpolation by Gaussian functions: a survey. J. Anal 8, 157–178 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Riemenschneider, S.D., Sivakumar, N.: On the Cardinal-interpolation Operator Associated with the One-dimensional Multiquadric,. East J. Approx 7(4), 485–514 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Riemenschneider, S.D., Sivakumar, N.: On cardinal interpolation by Gaussian radial-basis functions: properties of fundamental functions and estimates for Lebesgue constants. J. Anal. Math 79, 33–61 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schoenberg, I.J.: Cardinal spline interpolation, vol. 12. Society for Industrial and Applied Mathematics, Philadelphia (1973)

  32. Watson, G.N.: A treatise on the theory of Bessel functions, Second Edition, Cambridge University Press (1944)

  33. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wendland, H.: Scattered data approximation, Vol. 17 Cambridge University Press (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keaton Hamm.

Additional information

Communicated by: T. Lyche

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamm, K., Ledford, J. Cardinal interpolation with general multiquadrics. Adv Comput Math 42, 1149–1186 (2016). https://doi.org/10.1007/s10444-016-9457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-016-9457-0

Keywords

Mathematics Subject Classification (2010)

Navigation