Skip to main content
Log in

Design Optimization of Hybrid FRP/RC Bridge

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

A Correction to this article was published on 31 May 2018

This article has been updated

Abstract

The hybrid bridge consists of a Reinforced Concrete (RC) slab supported by U-shaped Fiber Reinforced Polymer (FRP) girders. Previous studies on similar hybrid bridges constructed in the United States and Europe seem to substantiate these hybrid designs for lightweight, high strength, and durable highway bridge construction. In the current study, computational and optimization analyses were carried out to investigate six composite material systems consisting of E-glass and carbon fibers. Optimization constraints are determined by stress, deflection and manufacturing requirements. Finite Element Analysis (FEA) and optimization software were utilized, and a framework was developed to run the complete analyses in an automated fashion. Prior to that, FEA validation of previous studies on similar U-shaped FRP girders that were constructed in Poland and Texas is presented. A finer optimization analysis is performed for the case of the Texas hybrid bridge. The optimization outcome of the hybrid FRP/RC bridge shows the appropriate composite material selection and cross-section geometry that satisfies all the applicable Limit States (LS) and, at the same time, results in the lightest design. Critical limit states show that shear stress criteria determine the optimum design for bridge spans less than 15.24 m and deflection criteria controls for longer spans. Increased side wall thickness can reduce maximum observed shear stresses, but leads to a high weight penalty. A taller cross-section and a thicker girder base can efficiently lower the observed deflections and normal stresses. Finally, substantial weight savings can be achieved by the optimization framework if base and side-wall thickness are treated as independent variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 31 May 2018

    The original version of this article unfortunately contained an error.

References

  1. Bakis, C.E., Bank, L.C., Brown, V.L., et al.: Fiber-Reinforced Polymer Composites for Construction–State-of-the-Art Review. J. Comp. Constr. 6(2), 73–87 (2002)

    Article  CAS  Google Scholar 

  2. Bank L. C.: Structural design with FRP materials, Comp. Constr. (2006)

  3. AASHTO: Guide Specifications for Design of FRP Pedestrian Bridges. 1st Edit., Washington, DC (2008)

  4. AASHTO: LRFD Bridge Design Guide Specifications for GFRP-Reinforced Concrete Bridge Decks and Traffic Railings. 1st Edit., Washington, DC (2009)

  5. AASHTO: LRFD Bridge Design Specifications., 7th Edit., Washington, DC (2014)

  6. AASHTO: LRFD Guide Specifications for Design of Concrete-Filled FRP Tubes, Wanshigton, DC (2012)

  7. O’Connor, J.S.: Composite Bridge Decking: Final Project Report, FHWA-HIF-13-029. Federal Highway Administration, Washington, D.C (2013)

    Google Scholar 

  8. Zhao, L., Burgueno, R., La Rovere, H., et al.: Preliminary Evaluation of the Hybrid Tube Bridge System, California Department of Transportation Report No. TR-2000/04 (2000)

  9. Maine, Department of Transportation. Research Reports and Publications: Bridge Research, http://www.maine.gov/mdot/tr/rrp/ (2016) Accessed 21 November 2017

  10. Chen, Y., Ziehl, P.H., Harrison, K.W. : Experimental Characterization and Optimization of Hybrid FRP/RC Bridge Superstructure System. J. Bridg. Eng. 14(1), 45–54 (2009)

    Article  Google Scholar 

  11. Ziehl, P.H., Engelhardt, M.D., Fowler, T.J., et al.: Design and Field Evaluation of Hybrid FRP/Reinforced Concrete Superstructure System. J. Bridg. Eng. 14(5), 309–318 (2009)

    Article  Google Scholar 

  12. Siwowski, T., Kaleta, D., Rajchel, M.: Design and research on the first polish FRP composite road bridge. Romanian J. Transp. Infrast. 4(2), 62–74 (2015)

    Article  Google Scholar 

  13. Papapetrou, V.S., Tamijani, A.Y., Daewon, K.: Preliminary Wing Study of General Aviation Aircraft with Stitched Composite Panels. J. Aircr. 54(2), 704–715 (2017). https://doi.org/10.2514/1.C033884

    Article  Google Scholar 

  14. Fernandes, R.R., Tamijani, A.Y.: Flutter Analysis of Laminated Curvilinear-Stiffened Plates. AIAA J. 55(3), 998–1011 (2017)

    Article  Google Scholar 

  15. Aboelseoud, M.A., Myers, J.J.: Finite-Element Modeling of Hybrid Composite Beam Bridges in Missouri, J. Bridge Eng (2015)

  16. Harris, D.K., Civitillo, J.M., Gheitasi, A.: Performance and Behavior of Hybrid Composite Beam Bridge in Virginia: Live Load Testing. J. Bridg. Eng. 21(6), 1–1 (2016)

    Article  Google Scholar 

  17. VectorPly. Databease, http://vectorply.com/database-search/ Accessed 12 September 2016

  18. WacoBoom. Material Specifications, http://wacoboom.com/booms/specifications/ (2016) Accessed 20 October 2016

  19. Hexcel. Data Resources, http://www.hexcel.com/Resources/DataSheets/ (2016) Accessed 01 September 2016

Download references

Acknowledgments

This work is part of a project sponsored by Florida Department of Transportation (FDOT). The authors would like to thank Mr. Will Potter, Assistant State Structures Design Engineer, FDOT, and Mr. Steve Nolan, Senior Structures Design Engineer, FDOT, for their insights and contributions. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the FDOT or the US Department of Transportation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios S. Papapetrou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papapetrou, V.S., Tamijani, A.Y., Brown, J. et al. Design Optimization of Hybrid FRP/RC Bridge. Appl Compos Mater 26, 249–270 (2019). https://doi.org/10.1007/s10443-018-9691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-018-9691-3

Keywords

Navigation