Skip to main content

Advertisement

Log in

Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hao, S., Cui, L., Jiang, D., Han, X., Ren, Y., Jiang, J., Liu, Y., Liu, Z., Mao, S., Wang, Y., Li, Y., Ren, X., Ding, X., Wang, S., Yu, C., Shi, X., Du, M., Yang, F., Zheng, Y., Zhang, Z., Li, X., Brown, D.E., Li, J.: A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science. 339(6124), 1191–1194 (2013). https://doi.org/10.1126/science.1228602

    Article  CAS  Google Scholar 

  2. Zhou, M.: Exceptional properties by design. Science. 339(6124), 1161–1162 (2013). https://doi.org/10.1126/science.1236378

    Article  CAS  Google Scholar 

  3. Li, J., Shan, Z., Ma, E.: Elastic strain engineering for unprecedented materials properties. MRS Bull. 39(02), 108–117 (2014). https://doi.org/10.1557/mrs.2014.3

    Article  CAS  Google Scholar 

  4. Chen, Y., Liu, Y., Sun, C., Yu, K.Y., Song, M., Wang, H., Zhang, X.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60(18), 6312–6321 (2012). https://doi.org/10.1016/j.actamat.2012.08.005

    Article  CAS  Google Scholar 

  5. Thilly, L., Petegem, S.V., Renault, P.O., Lecouturier, F., Vidal, V., Schmitt, B., Swygenhoven, H.V.: A new criterion for elasto-plastic transition in nanomaterials: application to size and composite effects on Cu–Nb nanocomposite wires. Acta Mater. 57(11), 3157–3169 (2009). https://doi.org/10.1016/j.actamat.2009.03.021

    Article  CAS  Google Scholar 

  6. Sun, Y., Sun, J., Liu, M., Chen, Q.: Mechanical strength of carbon nanotube–nickel nanocomposites. Nanotechnology. 18(50), 505704 (2007). https://doi.org/10.1088/0957-4484/18/50/505704

    Article  CAS  Google Scholar 

  7. Thilly, L., Renault, P.O., Vidal, V., Lecouturier, F., Van Petegem, S., Stuhr, U., van Swygenhoven, H.: Plasticity of multiscale nanofilamentary Cu/Nb composite wires during in situ neutron diffraction: Codeformation and size effect. Appl. Phys. Lett. 88(19), 191906 (2006). https://doi.org/10.1063/1.2202720

    Article  CAS  Google Scholar 

  8. Dzenis, Y.: Structural nanocomposites. Science. 319(5862), 419–420 (2008). https://doi.org/10.1126/science.1151434

    Article  CAS  Google Scholar 

  9. Podsiadlo, P., Kaushik, A.K., Arruda, E.M., Waas, A.M., Shim, B.S., Xu, J., Nandivada, H., Pumplin, B.G., Lahann, J., Ramamoorthy, A., Kotov, N.A.: Ultrastrong and stiff layered polymer nanocomposites. Science. 318(5847), 80–83 (2007). https://doi.org/10.1126/science.1143176

    Article  CAS  Google Scholar 

  10. Coleman, J.N., Khan, U., Gun’ko, Y.K.: Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18(6), 689–706 (2006). https://doi.org/10.1002/adma.200501851

    Article  CAS  Google Scholar 

  11. Otsuka, K., Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  CAS  Google Scholar 

  12. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  13. Hao, S., Cui, L., Guo, F., Liu, Y., Shi, X., Jiang, D., Brown, D.E., Ren, Y.: Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect. Sci. Rep. 5(1), 8892 (2015). https://doi.org/10.1038/srep08892

    Article  CAS  Google Scholar 

  14. Yang, F., Ni, D., Hao, S., Li, S., Ma, Z., Liu, Y., Feng, C., Cui, L.: Microstructure and phase stress partition of Mo fiber reinforced CuZnAl composite. Mater. Sci. Eng. A. 628, 419–422 (2015). https://doi.org/10.1016/j.msea.2015.01.068

    Article  CAS  Google Scholar 

  15. Liu, Z., Cui, L., Liu, Y., Jiang, D., Jiang, J., Shi, X., Shao, Y., Zheng, Y.: Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites. Scripta Mater. 77, 75–78 (2014). https://doi.org/10.1016/j.scriptamat.2014.01.027

    Article  CAS  Google Scholar 

  16. Dong, Y., Cong, D., Nie, Z., He, Z., Li, L., Wang, Z., et al.: Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy. Appl. Phys. Lett. 107(20), 201901 (2015). https://doi.org/10.1063/1.4935691

    Article  CAS  Google Scholar 

  17. Hao, S.J., Jiang, D.Q., Cui, L.S., Wang, Y.D., Shi, X.B., Nie, Z.H., Brown, D.E., Ren, Y.: Phase-stress partition and stress-induced martensitic transformation in NbTi/NiTi nanocomposite. Appl. Phys. Lett. 99(8), 084103 (2011). https://doi.org/10.1063/1.3629768

    Article  CAS  Google Scholar 

  18. Yu, C., Liu, Z., Liu, Y., Shao, Y., Ren, Y., Cui, L.: Load transfer in phase transforming matrix–nanowire composite revealing the significant load carrying capacity of the nanowires. Mater. Des. 89, 721–726 (2016). https://doi.org/10.1016/j.matdes.2015.10.029

    Article  CAS  Google Scholar 

  19. Li, Y., RAMESH, K.T.: Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal–matrix composites at high rates of strain. Acta Mater. 46, 5633-5646 (1998). https://doi.org/10.1016/S1359-6454(98)00250-X

    Article  CAS  Google Scholar 

  20. Xin, L., Yang, W., Zhao, Q., Dong, R., Liang, X., Xiu, Z., Hussain, M., Wu, G.: Effect of extrusion treatment on the microstructure and mechanical behavior of SiC nanowires reinforced al matrix composites. Mater. Sci. Eng. A. 682, 38–44 (2017). https://doi.org/10.1016/j.msea.2016.11.042

    Article  CAS  Google Scholar 

  21. Hao, S., Cui, L., Wang, H., Jiang, D., Liu, Y., Yan, J., Ren, Y., Han, X., Brown, D.E., Li, J.: Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires. ACS Appl. Mater. Interfaces. 8(5), 2917–2922 (2016). https://doi.org/10.1021/acsami.5b10840

    Article  CAS  Google Scholar 

  22. Segurado, J., Llorca, J.: A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids. 50(10), 2107–2121 (2002). https://doi.org/10.1016/S0022-5096(02)00021-2

    Article  CAS  Google Scholar 

  23. Tian, W., Qi, L., Zhou, J., Guan, J.: Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf /Mg composites. Comput. Mater. Sci. 89, 6–11 (2014). https://doi.org/10.1016/j.commatsci.2014.03.004

    Article  CAS  Google Scholar 

  24. Mirkhalaf, S.M., Andrade Pires, F.M., Simoes, R.: Determination of the size of the representative volume element (RVE) for the simulation of heterogeneous polymers at finite strains. Finite Elem. Anal. Des. 119, 30–44 (2016). https://doi.org/10.1016/j.finel.2016.05.004

    Article  Google Scholar 

  25. Zare, Y., YopRhee, K., Hui, D.: Influences of nanoparticles aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Compos. Pt. B-Eng. 122, 41–46 (2017). https://doi.org/10.1016/j.compositesb.2017.04.008

    Article  CAS  Google Scholar 

  26. Xia, Z., Zhang, Y., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003). https://doi.org/10.1016/S0020-7683(03)00024-6

    Article  Google Scholar 

  27. Xia, Z., Zhou, C., Yong, Q., Wang, X.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006). https://doi.org/10.1016/j.ijsolstr.2005.03.055

    Article  Google Scholar 

  28. Auricchio, F., Taylor, R.L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Comput. Methods Appl. Mech. Eng. 143(1-2), 175–194 (1997). https://doi.org/10.1016/S0045-7825(96)01147-4

    Article  Google Scholar 

  29. Auricchio, F., Taylor, R.L., Lubliner, J.: Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Comput. Methods Appl. Mech. Eng. 146(3-4), 281–312 (1997). https://doi.org/10.1016/S0045-7825(96)01232-7

    Article  Google Scholar 

  30. Gong, X., Pelton, A.: ABAQUS Analysis on Nitinol Medical Applications. SMST Society, California (2002)

    Google Scholar 

  31. Lei, H., Wang, Z., Zhou, B., Tong, L., Wang, X.: Simulation and analysis of shape memory alloy fiber reinforced composite based on cohesive zone model. Mater. Des. 40, 138–147 (2012). https://doi.org/10.1016/j.matdes.2012.03.037

    Article  CAS  Google Scholar 

  32. Lei, H., Wang, Z., Tong, L., Zhou, B., Fu, J.: Experimental and numerical investigation on the macroscopic mechanical behavior of shape memory alloy hybrid composite with weak interface. Compos. Struct. 101, 301–312 (2013). https://doi.org/10.1016/j.compstruct.2013.02.006

    Article  Google Scholar 

  33. Cohen, D.E., Bevk, J.: Enhancement of the Young’s modulus in the ultrafine Cu-Nb filamentary composites. Appl. Phys. Lett. 39(8), 595–597 (1981). https://doi.org/10.1063/1.92842

    Article  CAS  Google Scholar 

  34. Nemat-Nasser, S., Guo, W.: Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech. Mater. 38(5-6), 463–474 (2006). https://doi.org/10.1016/j.mechmat.2005.07.004

    Article  Google Scholar 

  35. Machado, G., Louche, H., Alonso, T., Favier, D.: Superelastic cellular NiTi tube-based materials: fabrication, experiments and modeling. Mater. Des. 65, 212–220 (2015). https://doi.org/10.1016/j.matdes.2014.09.007

    Article  CAS  Google Scholar 

  36. Jiang, J., Jiang, D., Hao, S., Yu, C., Zhang, J., Ren, Y., Lu, D., Xie, S., Cui, L.: A nano lamella NbTi–NiTi composite with high strength. Mater. Sci. Eng. A. 633, 121–124 (2015). https://doi.org/10.1016/j.msea.2015.03.010

    Article  CAS  Google Scholar 

  37. Jia, Z., Ma, H., Cheng, L., Lau, K., Hui, D., Yuan, G.: Stress transfer properties of carbon nanotube reinforced polymer composites at low temperature environment. Compos. Pt. B-Eng. 106, 356–365 (2016). https://doi.org/10.1016/j.compositesb.2016.09.006

    Article  CAS  Google Scholar 

  38. Mohonee, V.K., Goh, K.L.: Effects of fibre-fibre interaction on stress uptake in discontinuous fibre reinforced composites. Compos. Pt. B-Eng. 86, 221–228 (2016). https://doi.org/10.1016/j.compositesb.2015.10.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate the support of the National Natural Science Foundation of China (51231008, 51320105014, 51501141) and 111 project (B06025). X. Z acknowledges the computational resources provided by the HPC platform of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Zhang, Hongxiang Zong or Xiangdong Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ren, J., Wang, X. et al. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites. Appl Compos Mater 25, 1369–1384 (2018). https://doi.org/10.1007/s10443-017-9671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-017-9671-z

Keywords

Navigation